Loading…

A reduced order model for dielectric elastomer actuators over a range of frequencies and prestrains

The actuation strain of an equibiaxially prestrained dielectric elastomer membrane is studied as a function of driving frequency and prestrain. Experimental data are gathered on the membrane's creep and recovery following DC actuation, as well as the steady state amplitude and phase for AC driv...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2016-09, Vol.109 (13)
Main Authors: Kiser, Jillian, Manning, Michael, Adler, David, Breuer, Kenneth
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The actuation strain of an equibiaxially prestrained dielectric elastomer membrane is studied as a function of driving frequency and prestrain. Experimental data are gathered on the membrane's creep and recovery following DC actuation, as well as the steady state amplitude and phase for AC driving voltages ranging from 2 to 40 Hz. The effect of prestretch on steady state actuation was also investigated, using membranes of both 250% and 300% prestretch. A three-element generalized Kelvin-Voigt model is developed to capture the transient and steady-state actuation responses as a function of frequency and prestrain. We show that, despite its relative simplicity, this model captures the relevant timescales for the membrane behavior with good fidelity and can be used to accurately predict the actuation magnitude and phase as a function of time over a range of actuation configurations and driving conditions.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4963729