Loading…
Competitive adsorption of Pb2+ and Zn2+ ions from aqueous solutions by modified coal fly ash
Coal fly ash (CFA), which is a solid waste generated in large amounts worldwide, is mainly composed of some oxides having high crystallinity, including quartz (SiO2) and mullite (3Al2O3 2SiO2), and unburned carbon as a mesopore material that enables it to act as a dual site adsorbent. To decrease th...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Coal fly ash (CFA), which is a solid waste generated in large amounts worldwide, is mainly composed of some oxides having high crystallinity, including quartz (SiO2) and mullite (3Al2O3 2SiO2), and unburned carbon as a mesopore material that enables it to act as a dual site adsorbent. To decrease the crystallinity, CFA was modified by sodium hydroxide treatment. The modified fly ash (MFA) contains lower amount of Si and Al and has a higher specific surface area than the untreated fly ash (CFA). The objective of this study is to investigate the competitive adsorption of Pb2+ and Zn2+ from aqueous solutions by CFA and MFA. The effect of pH, contact time and initial concentration was investigated. Effective pH for Pb2+ and Zn2+ removal was 4. A greater percentage of Pb2+ and Zn2+ was removed with a decrease in the initial concentration of Pb2+ and Zn2+. Quasi-equilibrium reached in 240 min. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.4976871 |