Loading…

The role of Stern layer in the interplay of dielectric saturation and ion steric effects for the capacitance of graphene in aqueous electrolytes

Nano-scale devices continue to challenge our theoretical understanding of microscopic systems. Of particular interest is the characterization of the interface electrochemistry of graphene-based sensors. Typically operated in a regime of high ion concentration and high surface charge density, dielect...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2017-03, Vol.146 (9)
Main Authors: Daniels, Lindsey, Scott, Matthew, Mišković, Z. L.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c330t-226982b997245249ab841a5623bcd447d597fcdc2e6ed9f9cd0e05e4a0c856a23
cites cdi_FETCH-LOGICAL-c330t-226982b997245249ab841a5623bcd447d597fcdc2e6ed9f9cd0e05e4a0c856a23
container_end_page
container_issue 9
container_start_page
container_title The Journal of chemical physics
container_volume 146
creator Daniels, Lindsey
Scott, Matthew
Mišković, Z. L.
description Nano-scale devices continue to challenge our theoretical understanding of microscopic systems. Of particular interest is the characterization of the interface electrochemistry of graphene-based sensors. Typically operated in a regime of high ion concentration and high surface charge density, dielectric saturation and ion crowding become non-negligible at the interface, complicating continuum treatments based upon the Poisson-Boltzmann equation. Using the Poisson-Boltzmann equation, modified with the Bikerman-Freise model to account for non-zero ion size and the Booth model to account for dielectric saturation at the interface, we characterize the diffuse layer capacitance of both metallic and graphene electrodes immersed in an aqueous electrolyte. We find that the diffuse layer capacitance exhibits two peaks when the surface charge density of the electrode is increased, in contrast with experimental results. We propose a self-consistent (and parameter-free) method to include the Stern layer which eliminates the spurious secondary peak in the capacitance and restores the correspondence of the model with experimental observations. This study sheds light on the interplay between the ion steric effects and the dielectric saturation in solvent, exposes the importance of quantum capacitance when graphene is used as an electrode, and demonstrates the importance of a self-consistent treatment of the Stern layer in continuum models of the electrode-electrolyte interface. Furthermore, the theoretical foundation provides a base upon which more detailed models of graphene-based sensors can be built.
doi_str_mv 10.1063/1.4976991
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4976991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jcp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-226982b997245249ab841a5623bcd447d597fcdc2e6ed9f9cd0e05e4a0c856a23</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqVw4A18BSll7SROfEQVf1IlDpRztLXXNCgkwXYPfQseGYf2zGm1O59mNcPYtYCFAJXfiUWhK6W1OGEzAbXO0gKnbAYgRaYVqHN2EcInAIhKFjP2s94S90NHfHD8LZLveYd78rzteUxS26fbmE6TblvqyETfGh4w7jzGdug59pZPMyQyKeRcYgJ3g_9zMDiiaSP25u_Hh8dxS_3kzPF7R8Mu8IPr0O0jhUt25rALdHWcc_b--LBePmer16eX5f0qM3kOMZNS6VputE4pSllo3NSFwFLJfGNsUVS21JUz1khSZLXTxgJBSQWCqUuFMp-zm4Ov8UMInlwz-vYL_b4R0ExVNqI5VpnY2wMbpiBT6H_gXy-9dlU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The role of Stern layer in the interplay of dielectric saturation and ion steric effects for the capacitance of graphene in aqueous electrolytes</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Daniels, Lindsey ; Scott, Matthew ; Mišković, Z. L.</creator><creatorcontrib>Daniels, Lindsey ; Scott, Matthew ; Mišković, Z. L.</creatorcontrib><description>Nano-scale devices continue to challenge our theoretical understanding of microscopic systems. Of particular interest is the characterization of the interface electrochemistry of graphene-based sensors. Typically operated in a regime of high ion concentration and high surface charge density, dielectric saturation and ion crowding become non-negligible at the interface, complicating continuum treatments based upon the Poisson-Boltzmann equation. Using the Poisson-Boltzmann equation, modified with the Bikerman-Freise model to account for non-zero ion size and the Booth model to account for dielectric saturation at the interface, we characterize the diffuse layer capacitance of both metallic and graphene electrodes immersed in an aqueous electrolyte. We find that the diffuse layer capacitance exhibits two peaks when the surface charge density of the electrode is increased, in contrast with experimental results. We propose a self-consistent (and parameter-free) method to include the Stern layer which eliminates the spurious secondary peak in the capacitance and restores the correspondence of the model with experimental observations. This study sheds light on the interplay between the ion steric effects and the dielectric saturation in solvent, exposes the importance of quantum capacitance when graphene is used as an electrode, and demonstrates the importance of a self-consistent treatment of the Stern layer in continuum models of the electrode-electrolyte interface. Furthermore, the theoretical foundation provides a base upon which more detailed models of graphene-based sensors can be built.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4976991</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><ispartof>The Journal of chemical physics, 2017-03, Vol.146 (9)</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-226982b997245249ab841a5623bcd447d597fcdc2e6ed9f9cd0e05e4a0c856a23</citedby><cites>FETCH-LOGICAL-c330t-226982b997245249ab841a5623bcd447d597fcdc2e6ed9f9cd0e05e4a0c856a23</cites><orcidid>0000-0002-9282-0641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.4976991$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76255</link.rule.ids></links><search><creatorcontrib>Daniels, Lindsey</creatorcontrib><creatorcontrib>Scott, Matthew</creatorcontrib><creatorcontrib>Mišković, Z. L.</creatorcontrib><title>The role of Stern layer in the interplay of dielectric saturation and ion steric effects for the capacitance of graphene in aqueous electrolytes</title><title>The Journal of chemical physics</title><description>Nano-scale devices continue to challenge our theoretical understanding of microscopic systems. Of particular interest is the characterization of the interface electrochemistry of graphene-based sensors. Typically operated in a regime of high ion concentration and high surface charge density, dielectric saturation and ion crowding become non-negligible at the interface, complicating continuum treatments based upon the Poisson-Boltzmann equation. Using the Poisson-Boltzmann equation, modified with the Bikerman-Freise model to account for non-zero ion size and the Booth model to account for dielectric saturation at the interface, we characterize the diffuse layer capacitance of both metallic and graphene electrodes immersed in an aqueous electrolyte. We find that the diffuse layer capacitance exhibits two peaks when the surface charge density of the electrode is increased, in contrast with experimental results. We propose a self-consistent (and parameter-free) method to include the Stern layer which eliminates the spurious secondary peak in the capacitance and restores the correspondence of the model with experimental observations. This study sheds light on the interplay between the ion steric effects and the dielectric saturation in solvent, exposes the importance of quantum capacitance when graphene is used as an electrode, and demonstrates the importance of a self-consistent treatment of the Stern layer in continuum models of the electrode-electrolyte interface. Furthermore, the theoretical foundation provides a base upon which more detailed models of graphene-based sensors can be built.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqVw4A18BSll7SROfEQVf1IlDpRztLXXNCgkwXYPfQseGYf2zGm1O59mNcPYtYCFAJXfiUWhK6W1OGEzAbXO0gKnbAYgRaYVqHN2EcInAIhKFjP2s94S90NHfHD8LZLveYd78rzteUxS26fbmE6TblvqyETfGh4w7jzGdug59pZPMyQyKeRcYgJ3g_9zMDiiaSP25u_Hh8dxS_3kzPF7R8Mu8IPr0O0jhUt25rALdHWcc_b--LBePmer16eX5f0qM3kOMZNS6VputE4pSllo3NSFwFLJfGNsUVS21JUz1khSZLXTxgJBSQWCqUuFMp-zm4Ov8UMInlwz-vYL_b4R0ExVNqI5VpnY2wMbpiBT6H_gXy-9dlU</recordid><startdate>20170307</startdate><enddate>20170307</enddate><creator>Daniels, Lindsey</creator><creator>Scott, Matthew</creator><creator>Mišković, Z. L.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9282-0641</orcidid></search><sort><creationdate>20170307</creationdate><title>The role of Stern layer in the interplay of dielectric saturation and ion steric effects for the capacitance of graphene in aqueous electrolytes</title><author>Daniels, Lindsey ; Scott, Matthew ; Mišković, Z. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-226982b997245249ab841a5623bcd447d597fcdc2e6ed9f9cd0e05e4a0c856a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daniels, Lindsey</creatorcontrib><creatorcontrib>Scott, Matthew</creatorcontrib><creatorcontrib>Mišković, Z. L.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daniels, Lindsey</au><au>Scott, Matthew</au><au>Mišković, Z. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of Stern layer in the interplay of dielectric saturation and ion steric effects for the capacitance of graphene in aqueous electrolytes</atitle><jtitle>The Journal of chemical physics</jtitle><date>2017-03-07</date><risdate>2017</risdate><volume>146</volume><issue>9</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Nano-scale devices continue to challenge our theoretical understanding of microscopic systems. Of particular interest is the characterization of the interface electrochemistry of graphene-based sensors. Typically operated in a regime of high ion concentration and high surface charge density, dielectric saturation and ion crowding become non-negligible at the interface, complicating continuum treatments based upon the Poisson-Boltzmann equation. Using the Poisson-Boltzmann equation, modified with the Bikerman-Freise model to account for non-zero ion size and the Booth model to account for dielectric saturation at the interface, we characterize the diffuse layer capacitance of both metallic and graphene electrodes immersed in an aqueous electrolyte. We find that the diffuse layer capacitance exhibits two peaks when the surface charge density of the electrode is increased, in contrast with experimental results. We propose a self-consistent (and parameter-free) method to include the Stern layer which eliminates the spurious secondary peak in the capacitance and restores the correspondence of the model with experimental observations. This study sheds light on the interplay between the ion steric effects and the dielectric saturation in solvent, exposes the importance of quantum capacitance when graphene is used as an electrode, and demonstrates the importance of a self-consistent treatment of the Stern layer in continuum models of the electrode-electrolyte interface. Furthermore, the theoretical foundation provides a base upon which more detailed models of graphene-based sensors can be built.</abstract><doi>10.1063/1.4976991</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9282-0641</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2017-03, Vol.146 (9)
issn 0021-9606
1089-7690
language eng
recordid cdi_scitation_primary_10_1063_1_4976991
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
title The role of Stern layer in the interplay of dielectric saturation and ion steric effects for the capacitance of graphene in aqueous electrolytes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A56%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20Stern%20layer%20in%20the%20interplay%20of%20dielectric%20saturation%20and%20ion%20steric%20effects%20for%20the%20capacitance%20of%20graphene%20in%20aqueous%20electrolytes&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Daniels,%20Lindsey&rft.date=2017-03-07&rft.volume=146&rft.issue=9&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.4976991&rft_dat=%3Cscitation_cross%3Ejcp%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c330t-226982b997245249ab841a5623bcd447d597fcdc2e6ed9f9cd0e05e4a0c856a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true