Loading…

Neural network versus classical time series forecasting models

Artificial neural network (ANN) has advantage in time series forecasting as it has potential to solve complex forecasting problems. This is because ANN is data driven approach which able to be trained to map past values of a time series. In this study the forecast performance between neural network...

Full description

Saved in:
Bibliographic Details
Main Authors: Nor, Maria Elena, Safuan, Hamizah Mohd, Shab, Noorzehan Fazahiyah Md, Asrul, Mohd, Abdullah, Affendi, Mohamad, Nurul Asmaa Izzati, Lee, Muhammad Hisyam
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1842
creator Nor, Maria Elena
Safuan, Hamizah Mohd
Shab, Noorzehan Fazahiyah Md
Asrul, Mohd
Abdullah, Affendi
Mohamad, Nurul Asmaa Izzati
Lee, Muhammad Hisyam
description Artificial neural network (ANN) has advantage in time series forecasting as it has potential to solve complex forecasting problems. This is because ANN is data driven approach which able to be trained to map past values of a time series. In this study the forecast performance between neural network and classical time series forecasting method namely seasonal autoregressive integrated moving average models was being compared by utilizing gold price data. Moreover, the effect of different data preprocessing on the forecast performance of neural network being examined. The forecast accuracy was evaluated using mean absolute deviation, root mean square error and mean absolute percentage error. It was found that ANN produced the most accurate forecast when Box-Cox transformation was used as data preprocessing.
doi_str_mv 10.1063/1.4982865
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4982865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124495178</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-9dfa3efcd9c7d791dfd55240a2942b16d3b4d373f99836e071a13e54af38ecd73</originalsourceid><addsrcrecordid>eNp9kEtLAzEcxIMoWKsHv8GCN2Fr_nlsNhdBii8oelHwFtI8JHW7WZNsxW9vpQVvnuYwv5mBQegc8AxwQ69gxmRL2oYfoAlwDrVooDlEE4wlqwmjb8foJOcVxkQK0U7Q9ZMbk-6q3pWvmD6qjUt5zJXpdM7BbI0S1q7KLgWXKx-TMzqX0L9X62hdl0_Rkddddmd7naLXu9uX-UO9eL5_nN8s6oFwWmppvabOGyuNsEKC9ZZzwrAmkpElNJYumaWCeilb2jgsQAN1nGlPW2esoFN0sesdUvwcXS5qFcfUbycVAcKY5CDaLXW5o7IJRZcQezWksNbpW21iUqD236jB-v9gwOr3zL8A_QG8NWag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2124495178</pqid></control><display><type>conference_proceeding</type><title>Neural network versus classical time series forecasting models</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Nor, Maria Elena ; Safuan, Hamizah Mohd ; Shab, Noorzehan Fazahiyah Md ; Asrul, Mohd ; Abdullah, Affendi ; Mohamad, Nurul Asmaa Izzati ; Lee, Muhammad Hisyam</creator><contributor>Yunus, Rossita Mohamad ; Mohamed, Ibrahim ; Bakar, Shaiful Anuar Abu</contributor><creatorcontrib>Nor, Maria Elena ; Safuan, Hamizah Mohd ; Shab, Noorzehan Fazahiyah Md ; Asrul, Mohd ; Abdullah, Affendi ; Mohamad, Nurul Asmaa Izzati ; Lee, Muhammad Hisyam ; Yunus, Rossita Mohamad ; Mohamed, Ibrahim ; Bakar, Shaiful Anuar Abu</creatorcontrib><description>Artificial neural network (ANN) has advantage in time series forecasting as it has potential to solve complex forecasting problems. This is because ANN is data driven approach which able to be trained to map past values of a time series. In this study the forecast performance between neural network and classical time series forecasting method namely seasonal autoregressive integrated moving average models was being compared by utilizing gold price data. Moreover, the effect of different data preprocessing on the forecast performance of neural network being examined. The forecast accuracy was evaluated using mean absolute deviation, root mean square error and mean absolute percentage error. It was found that ANN produced the most accurate forecast when Box-Cox transformation was used as data preprocessing.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4982865</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial neural networks ; Autoregressive models ; Forecasting ; Forecasting techniques ; Gold ; Neural networks ; Preprocessing ; Time series</subject><ispartof>AIP conference proceedings, 2017, Vol.1842 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Yunus, Rossita Mohamad</contributor><contributor>Mohamed, Ibrahim</contributor><contributor>Bakar, Shaiful Anuar Abu</contributor><creatorcontrib>Nor, Maria Elena</creatorcontrib><creatorcontrib>Safuan, Hamizah Mohd</creatorcontrib><creatorcontrib>Shab, Noorzehan Fazahiyah Md</creatorcontrib><creatorcontrib>Asrul, Mohd</creatorcontrib><creatorcontrib>Abdullah, Affendi</creatorcontrib><creatorcontrib>Mohamad, Nurul Asmaa Izzati</creatorcontrib><creatorcontrib>Lee, Muhammad Hisyam</creatorcontrib><title>Neural network versus classical time series forecasting models</title><title>AIP conference proceedings</title><description>Artificial neural network (ANN) has advantage in time series forecasting as it has potential to solve complex forecasting problems. This is because ANN is data driven approach which able to be trained to map past values of a time series. In this study the forecast performance between neural network and classical time series forecasting method namely seasonal autoregressive integrated moving average models was being compared by utilizing gold price data. Moreover, the effect of different data preprocessing on the forecast performance of neural network being examined. The forecast accuracy was evaluated using mean absolute deviation, root mean square error and mean absolute percentage error. It was found that ANN produced the most accurate forecast when Box-Cox transformation was used as data preprocessing.</description><subject>Artificial neural networks</subject><subject>Autoregressive models</subject><subject>Forecasting</subject><subject>Forecasting techniques</subject><subject>Gold</subject><subject>Neural networks</subject><subject>Preprocessing</subject><subject>Time series</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLAzEcxIMoWKsHv8GCN2Fr_nlsNhdBii8oelHwFtI8JHW7WZNsxW9vpQVvnuYwv5mBQegc8AxwQ69gxmRL2oYfoAlwDrVooDlEE4wlqwmjb8foJOcVxkQK0U7Q9ZMbk-6q3pWvmD6qjUt5zJXpdM7BbI0S1q7KLgWXKx-TMzqX0L9X62hdl0_Rkddddmd7naLXu9uX-UO9eL5_nN8s6oFwWmppvabOGyuNsEKC9ZZzwrAmkpElNJYumaWCeilb2jgsQAN1nGlPW2esoFN0sesdUvwcXS5qFcfUbycVAcKY5CDaLXW5o7IJRZcQezWksNbpW21iUqD236jB-v9gwOr3zL8A_QG8NWag</recordid><startdate>20170512</startdate><enddate>20170512</enddate><creator>Nor, Maria Elena</creator><creator>Safuan, Hamizah Mohd</creator><creator>Shab, Noorzehan Fazahiyah Md</creator><creator>Asrul, Mohd</creator><creator>Abdullah, Affendi</creator><creator>Mohamad, Nurul Asmaa Izzati</creator><creator>Lee, Muhammad Hisyam</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170512</creationdate><title>Neural network versus classical time series forecasting models</title><author>Nor, Maria Elena ; Safuan, Hamizah Mohd ; Shab, Noorzehan Fazahiyah Md ; Asrul, Mohd ; Abdullah, Affendi ; Mohamad, Nurul Asmaa Izzati ; Lee, Muhammad Hisyam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-9dfa3efcd9c7d791dfd55240a2942b16d3b4d373f99836e071a13e54af38ecd73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial neural networks</topic><topic>Autoregressive models</topic><topic>Forecasting</topic><topic>Forecasting techniques</topic><topic>Gold</topic><topic>Neural networks</topic><topic>Preprocessing</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nor, Maria Elena</creatorcontrib><creatorcontrib>Safuan, Hamizah Mohd</creatorcontrib><creatorcontrib>Shab, Noorzehan Fazahiyah Md</creatorcontrib><creatorcontrib>Asrul, Mohd</creatorcontrib><creatorcontrib>Abdullah, Affendi</creatorcontrib><creatorcontrib>Mohamad, Nurul Asmaa Izzati</creatorcontrib><creatorcontrib>Lee, Muhammad Hisyam</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nor, Maria Elena</au><au>Safuan, Hamizah Mohd</au><au>Shab, Noorzehan Fazahiyah Md</au><au>Asrul, Mohd</au><au>Abdullah, Affendi</au><au>Mohamad, Nurul Asmaa Izzati</au><au>Lee, Muhammad Hisyam</au><au>Yunus, Rossita Mohamad</au><au>Mohamed, Ibrahim</au><au>Bakar, Shaiful Anuar Abu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Neural network versus classical time series forecasting models</atitle><btitle>AIP conference proceedings</btitle><date>2017-05-12</date><risdate>2017</risdate><volume>1842</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Artificial neural network (ANN) has advantage in time series forecasting as it has potential to solve complex forecasting problems. This is because ANN is data driven approach which able to be trained to map past values of a time series. In this study the forecast performance between neural network and classical time series forecasting method namely seasonal autoregressive integrated moving average models was being compared by utilizing gold price data. Moreover, the effect of different data preprocessing on the forecast performance of neural network being examined. The forecast accuracy was evaluated using mean absolute deviation, root mean square error and mean absolute percentage error. It was found that ANN produced the most accurate forecast when Box-Cox transformation was used as data preprocessing.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4982865</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2017, Vol.1842 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_4982865
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Artificial neural networks
Autoregressive models
Forecasting
Forecasting techniques
Gold
Neural networks
Preprocessing
Time series
title Neural network versus classical time series forecasting models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A15%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Neural%20network%20versus%20classical%20time%20series%20forecasting%20models&rft.btitle=AIP%20conference%20proceedings&rft.au=Nor,%20Maria%20Elena&rft.date=2017-05-12&rft.volume=1842&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4982865&rft_dat=%3Cproquest_scita%3E2124495178%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p253t-9dfa3efcd9c7d791dfd55240a2942b16d3b4d373f99836e071a13e54af38ecd73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2124495178&rft_id=info:pmid/&rfr_iscdi=true