Loading…
Structural analysis of a phosphide-based epitaxial structure with a buried oxidized AlAs sacrificial layer
Phosphide-based thin-film light-emitting diodes (TF-LEDs) lattice-matched to GaAs are well established in optoelectronics in the wavelength range between 550 and 650 nm. In this work, we investigate the impact of oxidized AlAs to overlying phosphide-based pseudomorphically grown epitaxial structures...
Saved in:
Published in: | Journal of applied physics 2017-06, Vol.121 (21) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Phosphide-based thin-film light-emitting diodes (TF-LEDs) lattice-matched to GaAs are well established in optoelectronics in the wavelength range between 550 and 650 nm. In this work, we investigate the impact of oxidized AlAs to overlying phosphide-based pseudomorphically grown epitaxial structures. Oxidation of a buried AlAs sacrificial layer allows the separation of the grown TF-LED epitaxy from its substrates and enables an oxidation lift-off process. To evaluate the strain effect of progressing oxidation on the structure of the chip, we perform high-resolution x-ray diffraction analysis on as-grown, mesa-structured, semi-oxidized, and completely laterally oxidized chips. At each state, a pseudomorphic phosphide-based InAlP layer is found. The InAlP layer exhibits a tensile out-of-plane strain of approximately 0.20% and a compressive in-plane strain of approx. −0.19%. Additionally, scanning transmission electron microscopy, energy-dispersive x-ray spectroscopy, and μ-photoluminescence were used for investigation of the boundary zone of the oxidation front of AlAs, the interfaces between phosphide-based semiconductors (InAlP/InGaAlP) and oxidized amorphous AlAs and the light emission of InGaAlP multiple quantum wells. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4984056 |