Loading…
Oxygen migration enthalpy likely limits oxide precipitate dissolution during tabula rasa
In industrial silicon solar cells, oxygen-related defects lower device efficiencies by up to 20% (rel.). In order to mitigate these defects, a high-temperature homogenization anneal called tabula rasa (TR) that has been used in the electronics industry is now proposed for use in solar-grade wafers....
Saved in:
Published in: | Applied physics letters 2017-09, Vol.111 (13) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c389t-62c92bc61ed6f4beec9a46c18fbe8f6571fcbb8317bb78646890b316fdc702bb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c389t-62c92bc61ed6f4beec9a46c18fbe8f6571fcbb8317bb78646890b316fdc702bb3 |
container_end_page | |
container_issue | 13 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 111 |
creator | Looney, E. E. Laine, H. S. Youssef, A. Jensen, M. A. LaSalvia, V. Stradins, P. Buonassisi, T. |
description | In industrial silicon solar cells, oxygen-related defects lower device efficiencies by up to 20% (rel.). In order to mitigate these defects, a high-temperature homogenization anneal called tabula rasa (TR) that has been used in the electronics industry is now proposed for use in solar-grade wafers. This work addresses the kinetics of tabula rasa by elucidating the activation energy governing oxide precipitate dissolution, which is found to be 2.6 ± 0.5 eV. This value is consistent within uncertainty to the migration enthalpy of oxygen interstitials in silicon, implying TR to be kinetically limited by oxygen point-defect diffusion. This large activation energy is observed to limit oxygen precipitate dissolution during standard TR conditions, suggesting that more aggressive annealing conditions than conventionally used are required for complete bulk microdefect mitigation. |
doi_str_mv | 10.1063/1.4987144 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4987144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116063486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-62c92bc61ed6f4beec9a46c18fbe8f6571fcbb8317bb78646890b316fdc702bb3</originalsourceid><addsrcrecordid>eNp90FtLwzAUB_AgCs7pg9-g6JNCZ07TJemjDG8w2IuCbyFJ0y2za2qSyvbt7S7og-DT4cDvXPgjdAl4BJiSOxjlBWeQ50doAJixlADwYzTAGJOUFmM4RWchLPt2nBEyQO-z9WZummRl515G65rENHEh63aT1PbD1NuysjEkbm1Lk7TeaNvaKKNJShuCq7vdUNl528yTKFVXy8TLIM_RSSXrYC4OdYjeHh9eJ8_pdPb0MrmfpprwIqY000WmNAVT0ipXxuhC5lQDr5ThFR0zqLRSnABTinGaU15gRYBWpWY4U4oM0dV-rwvRiqBtNHqhXdMYHQWQIqcs69H1HrXefXYmRLF0nW_6v0QGQPvgck57dbNX2rsQvKlE6-1K-o0ALLbpChCHdHt7u7fbi7vgfvCX879QtGX1H_67-RuBfImp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116063486</pqid></control><display><type>article</type><title>Oxygen migration enthalpy likely limits oxide precipitate dissolution during tabula rasa</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Looney, E. E. ; Laine, H. S. ; Youssef, A. ; Jensen, M. A. ; LaSalvia, V. ; Stradins, P. ; Buonassisi, T.</creator><creatorcontrib>Looney, E. E. ; Laine, H. S. ; Youssef, A. ; Jensen, M. A. ; LaSalvia, V. ; Stradins, P. ; Buonassisi, T.</creatorcontrib><description>In industrial silicon solar cells, oxygen-related defects lower device efficiencies by up to 20% (rel.). In order to mitigate these defects, a high-temperature homogenization anneal called tabula rasa (TR) that has been used in the electronics industry is now proposed for use in solar-grade wafers. This work addresses the kinetics of tabula rasa by elucidating the activation energy governing oxide precipitate dissolution, which is found to be 2.6 ± 0.5 eV. This value is consistent within uncertainty to the migration enthalpy of oxygen interstitials in silicon, implying TR to be kinetically limited by oxygen point-defect diffusion. This large activation energy is observed to limit oxygen precipitate dissolution during standard TR conditions, suggesting that more aggressive annealing conditions than conventionally used are required for complete bulk microdefect mitigation.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4987144</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Activation energy ; Applied physics ; Defect annealing ; Dissolution ; Enthalpy ; Interstitials ; Migration ; Oxygen ; Photovoltaic cells ; Silicon ; Solar cells</subject><ispartof>Applied physics letters, 2017-09, Vol.111 (13)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-62c92bc61ed6f4beec9a46c18fbe8f6571fcbb8317bb78646890b316fdc702bb3</citedby><cites>FETCH-LOGICAL-c389t-62c92bc61ed6f4beec9a46c18fbe8f6571fcbb8317bb78646890b316fdc702bb3</cites><orcidid>0000-0001-6895-9312 ; 0000000168959312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4987144$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1394672$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Looney, E. E.</creatorcontrib><creatorcontrib>Laine, H. S.</creatorcontrib><creatorcontrib>Youssef, A.</creatorcontrib><creatorcontrib>Jensen, M. A.</creatorcontrib><creatorcontrib>LaSalvia, V.</creatorcontrib><creatorcontrib>Stradins, P.</creatorcontrib><creatorcontrib>Buonassisi, T.</creatorcontrib><title>Oxygen migration enthalpy likely limits oxide precipitate dissolution during tabula rasa</title><title>Applied physics letters</title><description>In industrial silicon solar cells, oxygen-related defects lower device efficiencies by up to 20% (rel.). In order to mitigate these defects, a high-temperature homogenization anneal called tabula rasa (TR) that has been used in the electronics industry is now proposed for use in solar-grade wafers. This work addresses the kinetics of tabula rasa by elucidating the activation energy governing oxide precipitate dissolution, which is found to be 2.6 ± 0.5 eV. This value is consistent within uncertainty to the migration enthalpy of oxygen interstitials in silicon, implying TR to be kinetically limited by oxygen point-defect diffusion. This large activation energy is observed to limit oxygen precipitate dissolution during standard TR conditions, suggesting that more aggressive annealing conditions than conventionally used are required for complete bulk microdefect mitigation.</description><subject>Activation energy</subject><subject>Applied physics</subject><subject>Defect annealing</subject><subject>Dissolution</subject><subject>Enthalpy</subject><subject>Interstitials</subject><subject>Migration</subject><subject>Oxygen</subject><subject>Photovoltaic cells</subject><subject>Silicon</subject><subject>Solar cells</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90FtLwzAUB_AgCs7pg9-g6JNCZ07TJemjDG8w2IuCbyFJ0y2za2qSyvbt7S7og-DT4cDvXPgjdAl4BJiSOxjlBWeQ50doAJixlADwYzTAGJOUFmM4RWchLPt2nBEyQO-z9WZummRl515G65rENHEh63aT1PbD1NuysjEkbm1Lk7TeaNvaKKNJShuCq7vdUNl528yTKFVXy8TLIM_RSSXrYC4OdYjeHh9eJ8_pdPb0MrmfpprwIqY000WmNAVT0ipXxuhC5lQDr5ThFR0zqLRSnABTinGaU15gRYBWpWY4U4oM0dV-rwvRiqBtNHqhXdMYHQWQIqcs69H1HrXefXYmRLF0nW_6v0QGQPvgck57dbNX2rsQvKlE6-1K-o0ALLbpChCHdHt7u7fbi7vgfvCX879QtGX1H_67-RuBfImp</recordid><startdate>20170925</startdate><enddate>20170925</enddate><creator>Looney, E. E.</creator><creator>Laine, H. S.</creator><creator>Youssef, A.</creator><creator>Jensen, M. A.</creator><creator>LaSalvia, V.</creator><creator>Stradins, P.</creator><creator>Buonassisi, T.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6895-9312</orcidid><orcidid>https://orcid.org/0000000168959312</orcidid></search><sort><creationdate>20170925</creationdate><title>Oxygen migration enthalpy likely limits oxide precipitate dissolution during tabula rasa</title><author>Looney, E. E. ; Laine, H. S. ; Youssef, A. ; Jensen, M. A. ; LaSalvia, V. ; Stradins, P. ; Buonassisi, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-62c92bc61ed6f4beec9a46c18fbe8f6571fcbb8317bb78646890b316fdc702bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation energy</topic><topic>Applied physics</topic><topic>Defect annealing</topic><topic>Dissolution</topic><topic>Enthalpy</topic><topic>Interstitials</topic><topic>Migration</topic><topic>Oxygen</topic><topic>Photovoltaic cells</topic><topic>Silicon</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Looney, E. E.</creatorcontrib><creatorcontrib>Laine, H. S.</creatorcontrib><creatorcontrib>Youssef, A.</creatorcontrib><creatorcontrib>Jensen, M. A.</creatorcontrib><creatorcontrib>LaSalvia, V.</creatorcontrib><creatorcontrib>Stradins, P.</creatorcontrib><creatorcontrib>Buonassisi, T.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Looney, E. E.</au><au>Laine, H. S.</au><au>Youssef, A.</au><au>Jensen, M. A.</au><au>LaSalvia, V.</au><au>Stradins, P.</au><au>Buonassisi, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen migration enthalpy likely limits oxide precipitate dissolution during tabula rasa</atitle><jtitle>Applied physics letters</jtitle><date>2017-09-25</date><risdate>2017</risdate><volume>111</volume><issue>13</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>In industrial silicon solar cells, oxygen-related defects lower device efficiencies by up to 20% (rel.). In order to mitigate these defects, a high-temperature homogenization anneal called tabula rasa (TR) that has been used in the electronics industry is now proposed for use in solar-grade wafers. This work addresses the kinetics of tabula rasa by elucidating the activation energy governing oxide precipitate dissolution, which is found to be 2.6 ± 0.5 eV. This value is consistent within uncertainty to the migration enthalpy of oxygen interstitials in silicon, implying TR to be kinetically limited by oxygen point-defect diffusion. This large activation energy is observed to limit oxygen precipitate dissolution during standard TR conditions, suggesting that more aggressive annealing conditions than conventionally used are required for complete bulk microdefect mitigation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4987144</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6895-9312</orcidid><orcidid>https://orcid.org/0000000168959312</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2017-09, Vol.111 (13) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_4987144 |
source | American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Activation energy Applied physics Defect annealing Dissolution Enthalpy Interstitials Migration Oxygen Photovoltaic cells Silicon Solar cells |
title | Oxygen migration enthalpy likely limits oxide precipitate dissolution during tabula rasa |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A14%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20migration%20enthalpy%20likely%20limits%20oxide%20precipitate%20dissolution%20during%20tabula%20rasa&rft.jtitle=Applied%20physics%20letters&rft.au=Looney,%20E.%20E.&rft.date=2017-09-25&rft.volume=111&rft.issue=13&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4987144&rft_dat=%3Cproquest_scita%3E2116063486%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-62c92bc61ed6f4beec9a46c18fbe8f6571fcbb8317bb78646890b316fdc702bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2116063486&rft_id=info:pmid/&rfr_iscdi=true |