Loading…

Oxygen migration enthalpy likely limits oxide precipitate dissolution during tabula rasa

In industrial silicon solar cells, oxygen-related defects lower device efficiencies by up to 20% (rel.). In order to mitigate these defects, a high-temperature homogenization anneal called tabula rasa (TR) that has been used in the electronics industry is now proposed for use in solar-grade wafers....

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2017-09, Vol.111 (13)
Main Authors: Looney, E. E., Laine, H. S., Youssef, A., Jensen, M. A., LaSalvia, V., Stradins, P., Buonassisi, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c389t-62c92bc61ed6f4beec9a46c18fbe8f6571fcbb8317bb78646890b316fdc702bb3
cites cdi_FETCH-LOGICAL-c389t-62c92bc61ed6f4beec9a46c18fbe8f6571fcbb8317bb78646890b316fdc702bb3
container_end_page
container_issue 13
container_start_page
container_title Applied physics letters
container_volume 111
creator Looney, E. E.
Laine, H. S.
Youssef, A.
Jensen, M. A.
LaSalvia, V.
Stradins, P.
Buonassisi, T.
description In industrial silicon solar cells, oxygen-related defects lower device efficiencies by up to 20% (rel.). In order to mitigate these defects, a high-temperature homogenization anneal called tabula rasa (TR) that has been used in the electronics industry is now proposed for use in solar-grade wafers. This work addresses the kinetics of tabula rasa by elucidating the activation energy governing oxide precipitate dissolution, which is found to be 2.6 ± 0.5 eV. This value is consistent within uncertainty to the migration enthalpy of oxygen interstitials in silicon, implying TR to be kinetically limited by oxygen point-defect diffusion. This large activation energy is observed to limit oxygen precipitate dissolution during standard TR conditions, suggesting that more aggressive annealing conditions than conventionally used are required for complete bulk microdefect mitigation.
doi_str_mv 10.1063/1.4987144
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4987144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116063486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-62c92bc61ed6f4beec9a46c18fbe8f6571fcbb8317bb78646890b316fdc702bb3</originalsourceid><addsrcrecordid>eNp90FtLwzAUB_AgCs7pg9-g6JNCZ07TJemjDG8w2IuCbyFJ0y2za2qSyvbt7S7og-DT4cDvXPgjdAl4BJiSOxjlBWeQ50doAJixlADwYzTAGJOUFmM4RWchLPt2nBEyQO-z9WZummRl515G65rENHEh63aT1PbD1NuysjEkbm1Lk7TeaNvaKKNJShuCq7vdUNl528yTKFVXy8TLIM_RSSXrYC4OdYjeHh9eJ8_pdPb0MrmfpprwIqY000WmNAVT0ipXxuhC5lQDr5ThFR0zqLRSnABTinGaU15gRYBWpWY4U4oM0dV-rwvRiqBtNHqhXdMYHQWQIqcs69H1HrXefXYmRLF0nW_6v0QGQPvgck57dbNX2rsQvKlE6-1K-o0ALLbpChCHdHt7u7fbi7vgfvCX879QtGX1H_67-RuBfImp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116063486</pqid></control><display><type>article</type><title>Oxygen migration enthalpy likely limits oxide precipitate dissolution during tabula rasa</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Looney, E. E. ; Laine, H. S. ; Youssef, A. ; Jensen, M. A. ; LaSalvia, V. ; Stradins, P. ; Buonassisi, T.</creator><creatorcontrib>Looney, E. E. ; Laine, H. S. ; Youssef, A. ; Jensen, M. A. ; LaSalvia, V. ; Stradins, P. ; Buonassisi, T.</creatorcontrib><description>In industrial silicon solar cells, oxygen-related defects lower device efficiencies by up to 20% (rel.). In order to mitigate these defects, a high-temperature homogenization anneal called tabula rasa (TR) that has been used in the electronics industry is now proposed for use in solar-grade wafers. This work addresses the kinetics of tabula rasa by elucidating the activation energy governing oxide precipitate dissolution, which is found to be 2.6 ± 0.5 eV. This value is consistent within uncertainty to the migration enthalpy of oxygen interstitials in silicon, implying TR to be kinetically limited by oxygen point-defect diffusion. This large activation energy is observed to limit oxygen precipitate dissolution during standard TR conditions, suggesting that more aggressive annealing conditions than conventionally used are required for complete bulk microdefect mitigation.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4987144</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Activation energy ; Applied physics ; Defect annealing ; Dissolution ; Enthalpy ; Interstitials ; Migration ; Oxygen ; Photovoltaic cells ; Silicon ; Solar cells</subject><ispartof>Applied physics letters, 2017-09, Vol.111 (13)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-62c92bc61ed6f4beec9a46c18fbe8f6571fcbb8317bb78646890b316fdc702bb3</citedby><cites>FETCH-LOGICAL-c389t-62c92bc61ed6f4beec9a46c18fbe8f6571fcbb8317bb78646890b316fdc702bb3</cites><orcidid>0000-0001-6895-9312 ; 0000000168959312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4987144$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1394672$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Looney, E. E.</creatorcontrib><creatorcontrib>Laine, H. S.</creatorcontrib><creatorcontrib>Youssef, A.</creatorcontrib><creatorcontrib>Jensen, M. A.</creatorcontrib><creatorcontrib>LaSalvia, V.</creatorcontrib><creatorcontrib>Stradins, P.</creatorcontrib><creatorcontrib>Buonassisi, T.</creatorcontrib><title>Oxygen migration enthalpy likely limits oxide precipitate dissolution during tabula rasa</title><title>Applied physics letters</title><description>In industrial silicon solar cells, oxygen-related defects lower device efficiencies by up to 20% (rel.). In order to mitigate these defects, a high-temperature homogenization anneal called tabula rasa (TR) that has been used in the electronics industry is now proposed for use in solar-grade wafers. This work addresses the kinetics of tabula rasa by elucidating the activation energy governing oxide precipitate dissolution, which is found to be 2.6 ± 0.5 eV. This value is consistent within uncertainty to the migration enthalpy of oxygen interstitials in silicon, implying TR to be kinetically limited by oxygen point-defect diffusion. This large activation energy is observed to limit oxygen precipitate dissolution during standard TR conditions, suggesting that more aggressive annealing conditions than conventionally used are required for complete bulk microdefect mitigation.</description><subject>Activation energy</subject><subject>Applied physics</subject><subject>Defect annealing</subject><subject>Dissolution</subject><subject>Enthalpy</subject><subject>Interstitials</subject><subject>Migration</subject><subject>Oxygen</subject><subject>Photovoltaic cells</subject><subject>Silicon</subject><subject>Solar cells</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90FtLwzAUB_AgCs7pg9-g6JNCZ07TJemjDG8w2IuCbyFJ0y2za2qSyvbt7S7og-DT4cDvXPgjdAl4BJiSOxjlBWeQ50doAJixlADwYzTAGJOUFmM4RWchLPt2nBEyQO-z9WZummRl515G65rENHEh63aT1PbD1NuysjEkbm1Lk7TeaNvaKKNJShuCq7vdUNl528yTKFVXy8TLIM_RSSXrYC4OdYjeHh9eJ8_pdPb0MrmfpprwIqY000WmNAVT0ipXxuhC5lQDr5ThFR0zqLRSnABTinGaU15gRYBWpWY4U4oM0dV-rwvRiqBtNHqhXdMYHQWQIqcs69H1HrXefXYmRLF0nW_6v0QGQPvgck57dbNX2rsQvKlE6-1K-o0ALLbpChCHdHt7u7fbi7vgfvCX879QtGX1H_67-RuBfImp</recordid><startdate>20170925</startdate><enddate>20170925</enddate><creator>Looney, E. E.</creator><creator>Laine, H. S.</creator><creator>Youssef, A.</creator><creator>Jensen, M. A.</creator><creator>LaSalvia, V.</creator><creator>Stradins, P.</creator><creator>Buonassisi, T.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6895-9312</orcidid><orcidid>https://orcid.org/0000000168959312</orcidid></search><sort><creationdate>20170925</creationdate><title>Oxygen migration enthalpy likely limits oxide precipitate dissolution during tabula rasa</title><author>Looney, E. E. ; Laine, H. S. ; Youssef, A. ; Jensen, M. A. ; LaSalvia, V. ; Stradins, P. ; Buonassisi, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-62c92bc61ed6f4beec9a46c18fbe8f6571fcbb8317bb78646890b316fdc702bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation energy</topic><topic>Applied physics</topic><topic>Defect annealing</topic><topic>Dissolution</topic><topic>Enthalpy</topic><topic>Interstitials</topic><topic>Migration</topic><topic>Oxygen</topic><topic>Photovoltaic cells</topic><topic>Silicon</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Looney, E. E.</creatorcontrib><creatorcontrib>Laine, H. S.</creatorcontrib><creatorcontrib>Youssef, A.</creatorcontrib><creatorcontrib>Jensen, M. A.</creatorcontrib><creatorcontrib>LaSalvia, V.</creatorcontrib><creatorcontrib>Stradins, P.</creatorcontrib><creatorcontrib>Buonassisi, T.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Looney, E. E.</au><au>Laine, H. S.</au><au>Youssef, A.</au><au>Jensen, M. A.</au><au>LaSalvia, V.</au><au>Stradins, P.</au><au>Buonassisi, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen migration enthalpy likely limits oxide precipitate dissolution during tabula rasa</atitle><jtitle>Applied physics letters</jtitle><date>2017-09-25</date><risdate>2017</risdate><volume>111</volume><issue>13</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>In industrial silicon solar cells, oxygen-related defects lower device efficiencies by up to 20% (rel.). In order to mitigate these defects, a high-temperature homogenization anneal called tabula rasa (TR) that has been used in the electronics industry is now proposed for use in solar-grade wafers. This work addresses the kinetics of tabula rasa by elucidating the activation energy governing oxide precipitate dissolution, which is found to be 2.6 ± 0.5 eV. This value is consistent within uncertainty to the migration enthalpy of oxygen interstitials in silicon, implying TR to be kinetically limited by oxygen point-defect diffusion. This large activation energy is observed to limit oxygen precipitate dissolution during standard TR conditions, suggesting that more aggressive annealing conditions than conventionally used are required for complete bulk microdefect mitigation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4987144</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6895-9312</orcidid><orcidid>https://orcid.org/0000000168959312</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2017-09, Vol.111 (13)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_1_4987144
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Activation energy
Applied physics
Defect annealing
Dissolution
Enthalpy
Interstitials
Migration
Oxygen
Photovoltaic cells
Silicon
Solar cells
title Oxygen migration enthalpy likely limits oxide precipitate dissolution during tabula rasa
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A14%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20migration%20enthalpy%20likely%20limits%20oxide%20precipitate%20dissolution%20during%20tabula%20rasa&rft.jtitle=Applied%20physics%20letters&rft.au=Looney,%20E.%20E.&rft.date=2017-09-25&rft.volume=111&rft.issue=13&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4987144&rft_dat=%3Cproquest_scita%3E2116063486%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-62c92bc61ed6f4beec9a46c18fbe8f6571fcbb8317bb78646890b316fdc702bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2116063486&rft_id=info:pmid/&rfr_iscdi=true