Loading…
Changing role of carrier gas in formation of ethanol clusters by adiabatic expansion
Adiabatic expansion of molecular vapors is a celebrated method for producing pure and mixed clusters of relevance in both applied and fundamental studies. The present understanding of the relationship between experimental conditions and the structure of the clusters formed is incomplete. We explore...
Saved in:
Published in: | The Journal of chemical physics 2017-07, Vol.147 (1), p.014301-014301 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Adiabatic expansion of molecular vapors is a celebrated method for producing pure and mixed clusters of relevance in both applied and fundamental studies. The present understanding of the relationship between experimental conditions and the structure of the clusters formed is incomplete. We explore the role of the backing/carrier gas during adiabatic expansion of ethanol vapors with regard to cluster production and composition. Single-component clusters of ethanol were produced over a wide size-range by varying the rare gas (He, Ar) backing pressure, with Ar being more efficient than He in promoting the formation of pure ethanol clusters. However, at stagnation pressures
P
s
>
1.34
(
4
)
bar and temperature
49
(
2
)
°
C, synchrotron-based valence and inner-shell photoelectron spectroscopy reveals condensation of Ar carrier gas on the clusters. Theoretical calculations of cluster geometries as well as chemical shifts in carbon 1s ionization energies confirm that the experimental observations are consistent with an ethanol core covered by an outer shell of argon. Experiments on the 1-propanol/Ar system display a similar pattern as described for ethanol/Ar, indicating a broader range of validity of the results. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.4989475 |