Loading…
Uniform large-area growth of nanotemplated high-quality monolayer MoS2
Over the past decade, it has become apparent that the extreme sensitivity of 2D crystals to surface interactions presents a unique opportunity to tune material properties through surface functionalization and the mechanical assembly of 2D heterostructures. However, this opportunity carries with it a...
Saved in:
Published in: | Applied physics letters 2017-06, Vol.110 (26) |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-c1bd3501cb02c57d0d731e81cb3ea73e2fefcc26a805d66f7227c5a1a97673823 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-c1bd3501cb02c57d0d731e81cb3ea73e2fefcc26a805d66f7227c5a1a97673823 |
container_end_page | |
container_issue | 26 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 110 |
creator | Young, Justin R. Chilcote, Michael Barone, Matthew Xu, Jinsong Katoch, Jyoti Luo, Yunqiu Kelly Mueller, Sara Asel, Thaddeus J. Fullerton-Shirey, Susan K. Kawakami, Roland Gupta, Jay A. Brillson, Leonard J. Johnston-Halperin, Ezekiel |
description | Over the past decade, it has become apparent that the extreme sensitivity of 2D crystals to surface interactions presents a unique opportunity to tune material properties through surface functionalization and the mechanical assembly of 2D heterostructures. However, this opportunity carries with it a concurrent challenge: an enhanced sensitivity to surface contamination introduced by standard patterning techniques that is exacerbated by the difficulty in cleaning these atomically thin materials. Here, we report a templated MoS2 growth technique wherein Mo is deposited onto atomically stepped sapphire substrates through a SiN stencil with feature sizes down to 100 nm and subsequently sulfurized at high temperature. These films have a quality comparable to the best MoS2 prepared by other methodologies, and the thickness of the resulting MoS2 patterns can be tuned layer-by-layer by controlling the initial Mo deposition. The quality and thickness of the films are confirmed by scanning electron, scanning tunneling, and atomic force microscopies; Raman, photoluminescence, and x-ray photoelectron spectroscopies; and electron transport measurements. This approach critically enables the creation of patterned, single-layer MoS2 films with pristine surfaces suitable for subsequent modification via functionalization and mechanical stacking. Further, we anticipate that this growth technique should be broadly applicable within the family of transition metal dichalcogenides. |
doi_str_mv | 10.1063/1.4989851 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4989851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116120671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-c1bd3501cb02c57d0d731e81cb3ea73e2fefcc26a805d66f7227c5a1a97673823</originalsourceid><addsrcrecordid>eNp90EFLwzAYBuAgCs7pwX8Q8KSQmS8xSXuU4VSYeNCdQ5YmW0fbdGmq7N9b2dCD4OnjhYf3gxehS6AToJLfwuQuz_JMwBEaAVWKcIDsGI0opZzIXMApOuu6zRAF43yEZoum9CHWuDJx5YiJzuBVDJ9pjYPHjWlCcnVbmeQKvC5Xa7LtTVWmHa5DEyqzcxG_hDd2jk68qTp3cbhjtJg9vE-fyPz18Xl6PyeWM5WIhWXBBQW7pMwKVdBCcXDZkLkzijvmnbeWSZNRUUjpFWPKCgMmV1LxjPExutr3tjFse9clvQl9bIaXmgFIYFQqGNT1XtkYui46r9tY1ibuNFD9PZMGfZhpsDd729kymVSG5gd_hPgLdVv4__Df5i9IqXV9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116120671</pqid></control><display><type>article</type><title>Uniform large-area growth of nanotemplated high-quality monolayer MoS2</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Young, Justin R. ; Chilcote, Michael ; Barone, Matthew ; Xu, Jinsong ; Katoch, Jyoti ; Luo, Yunqiu Kelly ; Mueller, Sara ; Asel, Thaddeus J. ; Fullerton-Shirey, Susan K. ; Kawakami, Roland ; Gupta, Jay A. ; Brillson, Leonard J. ; Johnston-Halperin, Ezekiel</creator><creatorcontrib>Young, Justin R. ; Chilcote, Michael ; Barone, Matthew ; Xu, Jinsong ; Katoch, Jyoti ; Luo, Yunqiu Kelly ; Mueller, Sara ; Asel, Thaddeus J. ; Fullerton-Shirey, Susan K. ; Kawakami, Roland ; Gupta, Jay A. ; Brillson, Leonard J. ; Johnston-Halperin, Ezekiel</creatorcontrib><description>Over the past decade, it has become apparent that the extreme sensitivity of 2D crystals to surface interactions presents a unique opportunity to tune material properties through surface functionalization and the mechanical assembly of 2D heterostructures. However, this opportunity carries with it a concurrent challenge: an enhanced sensitivity to surface contamination introduced by standard patterning techniques that is exacerbated by the difficulty in cleaning these atomically thin materials. Here, we report a templated MoS2 growth technique wherein Mo is deposited onto atomically stepped sapphire substrates through a SiN stencil with feature sizes down to 100 nm and subsequently sulfurized at high temperature. These films have a quality comparable to the best MoS2 prepared by other methodologies, and the thickness of the resulting MoS2 patterns can be tuned layer-by-layer by controlling the initial Mo deposition. The quality and thickness of the films are confirmed by scanning electron, scanning tunneling, and atomic force microscopies; Raman, photoluminescence, and x-ray photoelectron spectroscopies; and electron transport measurements. This approach critically enables the creation of patterned, single-layer MoS2 films with pristine surfaces suitable for subsequent modification via functionalization and mechanical stacking. Further, we anticipate that this growth technique should be broadly applicable within the family of transition metal dichalcogenides.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4989851</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Atomic force microscopy ; Electron transport ; Heterostructures ; Material properties ; Molybdenum disulfide ; Photoluminescence ; Sapphire ; Sensitivity enhancement ; Substrates ; Thickness</subject><ispartof>Applied physics letters, 2017-06, Vol.110 (26)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-c1bd3501cb02c57d0d731e81cb3ea73e2fefcc26a805d66f7227c5a1a97673823</citedby><cites>FETCH-LOGICAL-c327t-c1bd3501cb02c57d0d731e81cb3ea73e2fefcc26a805d66f7227c5a1a97673823</cites><orcidid>0000-0003-1229-6286 ; 0000-0002-6240-3505 ; 0000-0003-3527-9761 ; 0000-0003-2720-0400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4989851$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27923,27924,76254</link.rule.ids></links><search><creatorcontrib>Young, Justin R.</creatorcontrib><creatorcontrib>Chilcote, Michael</creatorcontrib><creatorcontrib>Barone, Matthew</creatorcontrib><creatorcontrib>Xu, Jinsong</creatorcontrib><creatorcontrib>Katoch, Jyoti</creatorcontrib><creatorcontrib>Luo, Yunqiu Kelly</creatorcontrib><creatorcontrib>Mueller, Sara</creatorcontrib><creatorcontrib>Asel, Thaddeus J.</creatorcontrib><creatorcontrib>Fullerton-Shirey, Susan K.</creatorcontrib><creatorcontrib>Kawakami, Roland</creatorcontrib><creatorcontrib>Gupta, Jay A.</creatorcontrib><creatorcontrib>Brillson, Leonard J.</creatorcontrib><creatorcontrib>Johnston-Halperin, Ezekiel</creatorcontrib><title>Uniform large-area growth of nanotemplated high-quality monolayer MoS2</title><title>Applied physics letters</title><description>Over the past decade, it has become apparent that the extreme sensitivity of 2D crystals to surface interactions presents a unique opportunity to tune material properties through surface functionalization and the mechanical assembly of 2D heterostructures. However, this opportunity carries with it a concurrent challenge: an enhanced sensitivity to surface contamination introduced by standard patterning techniques that is exacerbated by the difficulty in cleaning these atomically thin materials. Here, we report a templated MoS2 growth technique wherein Mo is deposited onto atomically stepped sapphire substrates through a SiN stencil with feature sizes down to 100 nm and subsequently sulfurized at high temperature. These films have a quality comparable to the best MoS2 prepared by other methodologies, and the thickness of the resulting MoS2 patterns can be tuned layer-by-layer by controlling the initial Mo deposition. The quality and thickness of the films are confirmed by scanning electron, scanning tunneling, and atomic force microscopies; Raman, photoluminescence, and x-ray photoelectron spectroscopies; and electron transport measurements. This approach critically enables the creation of patterned, single-layer MoS2 films with pristine surfaces suitable for subsequent modification via functionalization and mechanical stacking. Further, we anticipate that this growth technique should be broadly applicable within the family of transition metal dichalcogenides.</description><subject>Applied physics</subject><subject>Atomic force microscopy</subject><subject>Electron transport</subject><subject>Heterostructures</subject><subject>Material properties</subject><subject>Molybdenum disulfide</subject><subject>Photoluminescence</subject><subject>Sapphire</subject><subject>Sensitivity enhancement</subject><subject>Substrates</subject><subject>Thickness</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90EFLwzAYBuAgCs7pwX8Q8KSQmS8xSXuU4VSYeNCdQ5YmW0fbdGmq7N9b2dCD4OnjhYf3gxehS6AToJLfwuQuz_JMwBEaAVWKcIDsGI0opZzIXMApOuu6zRAF43yEZoum9CHWuDJx5YiJzuBVDJ9pjYPHjWlCcnVbmeQKvC5Xa7LtTVWmHa5DEyqzcxG_hDd2jk68qTp3cbhjtJg9vE-fyPz18Xl6PyeWM5WIhWXBBQW7pMwKVdBCcXDZkLkzijvmnbeWSZNRUUjpFWPKCgMmV1LxjPExutr3tjFse9clvQl9bIaXmgFIYFQqGNT1XtkYui46r9tY1ibuNFD9PZMGfZhpsDd729kymVSG5gd_hPgLdVv4__Df5i9IqXV9</recordid><startdate>20170626</startdate><enddate>20170626</enddate><creator>Young, Justin R.</creator><creator>Chilcote, Michael</creator><creator>Barone, Matthew</creator><creator>Xu, Jinsong</creator><creator>Katoch, Jyoti</creator><creator>Luo, Yunqiu Kelly</creator><creator>Mueller, Sara</creator><creator>Asel, Thaddeus J.</creator><creator>Fullerton-Shirey, Susan K.</creator><creator>Kawakami, Roland</creator><creator>Gupta, Jay A.</creator><creator>Brillson, Leonard J.</creator><creator>Johnston-Halperin, Ezekiel</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1229-6286</orcidid><orcidid>https://orcid.org/0000-0002-6240-3505</orcidid><orcidid>https://orcid.org/0000-0003-3527-9761</orcidid><orcidid>https://orcid.org/0000-0003-2720-0400</orcidid></search><sort><creationdate>20170626</creationdate><title>Uniform large-area growth of nanotemplated high-quality monolayer MoS2</title><author>Young, Justin R. ; Chilcote, Michael ; Barone, Matthew ; Xu, Jinsong ; Katoch, Jyoti ; Luo, Yunqiu Kelly ; Mueller, Sara ; Asel, Thaddeus J. ; Fullerton-Shirey, Susan K. ; Kawakami, Roland ; Gupta, Jay A. ; Brillson, Leonard J. ; Johnston-Halperin, Ezekiel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-c1bd3501cb02c57d0d731e81cb3ea73e2fefcc26a805d66f7227c5a1a97673823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applied physics</topic><topic>Atomic force microscopy</topic><topic>Electron transport</topic><topic>Heterostructures</topic><topic>Material properties</topic><topic>Molybdenum disulfide</topic><topic>Photoluminescence</topic><topic>Sapphire</topic><topic>Sensitivity enhancement</topic><topic>Substrates</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young, Justin R.</creatorcontrib><creatorcontrib>Chilcote, Michael</creatorcontrib><creatorcontrib>Barone, Matthew</creatorcontrib><creatorcontrib>Xu, Jinsong</creatorcontrib><creatorcontrib>Katoch, Jyoti</creatorcontrib><creatorcontrib>Luo, Yunqiu Kelly</creatorcontrib><creatorcontrib>Mueller, Sara</creatorcontrib><creatorcontrib>Asel, Thaddeus J.</creatorcontrib><creatorcontrib>Fullerton-Shirey, Susan K.</creatorcontrib><creatorcontrib>Kawakami, Roland</creatorcontrib><creatorcontrib>Gupta, Jay A.</creatorcontrib><creatorcontrib>Brillson, Leonard J.</creatorcontrib><creatorcontrib>Johnston-Halperin, Ezekiel</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Young, Justin R.</au><au>Chilcote, Michael</au><au>Barone, Matthew</au><au>Xu, Jinsong</au><au>Katoch, Jyoti</au><au>Luo, Yunqiu Kelly</au><au>Mueller, Sara</au><au>Asel, Thaddeus J.</au><au>Fullerton-Shirey, Susan K.</au><au>Kawakami, Roland</au><au>Gupta, Jay A.</au><au>Brillson, Leonard J.</au><au>Johnston-Halperin, Ezekiel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform large-area growth of nanotemplated high-quality monolayer MoS2</atitle><jtitle>Applied physics letters</jtitle><date>2017-06-26</date><risdate>2017</risdate><volume>110</volume><issue>26</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Over the past decade, it has become apparent that the extreme sensitivity of 2D crystals to surface interactions presents a unique opportunity to tune material properties through surface functionalization and the mechanical assembly of 2D heterostructures. However, this opportunity carries with it a concurrent challenge: an enhanced sensitivity to surface contamination introduced by standard patterning techniques that is exacerbated by the difficulty in cleaning these atomically thin materials. Here, we report a templated MoS2 growth technique wherein Mo is deposited onto atomically stepped sapphire substrates through a SiN stencil with feature sizes down to 100 nm and subsequently sulfurized at high temperature. These films have a quality comparable to the best MoS2 prepared by other methodologies, and the thickness of the resulting MoS2 patterns can be tuned layer-by-layer by controlling the initial Mo deposition. The quality and thickness of the films are confirmed by scanning electron, scanning tunneling, and atomic force microscopies; Raman, photoluminescence, and x-ray photoelectron spectroscopies; and electron transport measurements. This approach critically enables the creation of patterned, single-layer MoS2 films with pristine surfaces suitable for subsequent modification via functionalization and mechanical stacking. Further, we anticipate that this growth technique should be broadly applicable within the family of transition metal dichalcogenides.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4989851</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1229-6286</orcidid><orcidid>https://orcid.org/0000-0002-6240-3505</orcidid><orcidid>https://orcid.org/0000-0003-3527-9761</orcidid><orcidid>https://orcid.org/0000-0003-2720-0400</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2017-06, Vol.110 (26) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_4989851 |
source | American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Applied physics Atomic force microscopy Electron transport Heterostructures Material properties Molybdenum disulfide Photoluminescence Sapphire Sensitivity enhancement Substrates Thickness |
title | Uniform large-area growth of nanotemplated high-quality monolayer MoS2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A33%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20large-area%20growth%20of%20nanotemplated%20high-quality%20monolayer%20MoS2&rft.jtitle=Applied%20physics%20letters&rft.au=Young,%20Justin%20R.&rft.date=2017-06-26&rft.volume=110&rft.issue=26&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4989851&rft_dat=%3Cproquest_scita%3E2116120671%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-c1bd3501cb02c57d0d731e81cb3ea73e2fefcc26a805d66f7227c5a1a97673823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2116120671&rft_id=info:pmid/&rfr_iscdi=true |