Loading…

Uniform large-area growth of nanotemplated high-quality monolayer MoS2

Over the past decade, it has become apparent that the extreme sensitivity of 2D crystals to surface interactions presents a unique opportunity to tune material properties through surface functionalization and the mechanical assembly of 2D heterostructures. However, this opportunity carries with it a...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2017-06, Vol.110 (26)
Main Authors: Young, Justin R., Chilcote, Michael, Barone, Matthew, Xu, Jinsong, Katoch, Jyoti, Luo, Yunqiu Kelly, Mueller, Sara, Asel, Thaddeus J., Fullerton-Shirey, Susan K., Kawakami, Roland, Gupta, Jay A., Brillson, Leonard J., Johnston-Halperin, Ezekiel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-c1bd3501cb02c57d0d731e81cb3ea73e2fefcc26a805d66f7227c5a1a97673823
cites cdi_FETCH-LOGICAL-c327t-c1bd3501cb02c57d0d731e81cb3ea73e2fefcc26a805d66f7227c5a1a97673823
container_end_page
container_issue 26
container_start_page
container_title Applied physics letters
container_volume 110
creator Young, Justin R.
Chilcote, Michael
Barone, Matthew
Xu, Jinsong
Katoch, Jyoti
Luo, Yunqiu Kelly
Mueller, Sara
Asel, Thaddeus J.
Fullerton-Shirey, Susan K.
Kawakami, Roland
Gupta, Jay A.
Brillson, Leonard J.
Johnston-Halperin, Ezekiel
description Over the past decade, it has become apparent that the extreme sensitivity of 2D crystals to surface interactions presents a unique opportunity to tune material properties through surface functionalization and the mechanical assembly of 2D heterostructures. However, this opportunity carries with it a concurrent challenge: an enhanced sensitivity to surface contamination introduced by standard patterning techniques that is exacerbated by the difficulty in cleaning these atomically thin materials. Here, we report a templated MoS2 growth technique wherein Mo is deposited onto atomically stepped sapphire substrates through a SiN stencil with feature sizes down to 100 nm and subsequently sulfurized at high temperature. These films have a quality comparable to the best MoS2 prepared by other methodologies, and the thickness of the resulting MoS2 patterns can be tuned layer-by-layer by controlling the initial Mo deposition. The quality and thickness of the films are confirmed by scanning electron, scanning tunneling, and atomic force microscopies; Raman, photoluminescence, and x-ray photoelectron spectroscopies; and electron transport measurements. This approach critically enables the creation of patterned, single-layer MoS2 films with pristine surfaces suitable for subsequent modification via functionalization and mechanical stacking. Further, we anticipate that this growth technique should be broadly applicable within the family of transition metal dichalcogenides.
doi_str_mv 10.1063/1.4989851
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4989851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116120671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-c1bd3501cb02c57d0d731e81cb3ea73e2fefcc26a805d66f7227c5a1a97673823</originalsourceid><addsrcrecordid>eNp90EFLwzAYBuAgCs7pwX8Q8KSQmS8xSXuU4VSYeNCdQ5YmW0fbdGmq7N9b2dCD4OnjhYf3gxehS6AToJLfwuQuz_JMwBEaAVWKcIDsGI0opZzIXMApOuu6zRAF43yEZoum9CHWuDJx5YiJzuBVDJ9pjYPHjWlCcnVbmeQKvC5Xa7LtTVWmHa5DEyqzcxG_hDd2jk68qTp3cbhjtJg9vE-fyPz18Xl6PyeWM5WIhWXBBQW7pMwKVdBCcXDZkLkzijvmnbeWSZNRUUjpFWPKCgMmV1LxjPExutr3tjFse9clvQl9bIaXmgFIYFQqGNT1XtkYui46r9tY1ibuNFD9PZMGfZhpsDd729kymVSG5gd_hPgLdVv4__Df5i9IqXV9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116120671</pqid></control><display><type>article</type><title>Uniform large-area growth of nanotemplated high-quality monolayer MoS2</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Young, Justin R. ; Chilcote, Michael ; Barone, Matthew ; Xu, Jinsong ; Katoch, Jyoti ; Luo, Yunqiu Kelly ; Mueller, Sara ; Asel, Thaddeus J. ; Fullerton-Shirey, Susan K. ; Kawakami, Roland ; Gupta, Jay A. ; Brillson, Leonard J. ; Johnston-Halperin, Ezekiel</creator><creatorcontrib>Young, Justin R. ; Chilcote, Michael ; Barone, Matthew ; Xu, Jinsong ; Katoch, Jyoti ; Luo, Yunqiu Kelly ; Mueller, Sara ; Asel, Thaddeus J. ; Fullerton-Shirey, Susan K. ; Kawakami, Roland ; Gupta, Jay A. ; Brillson, Leonard J. ; Johnston-Halperin, Ezekiel</creatorcontrib><description>Over the past decade, it has become apparent that the extreme sensitivity of 2D crystals to surface interactions presents a unique opportunity to tune material properties through surface functionalization and the mechanical assembly of 2D heterostructures. However, this opportunity carries with it a concurrent challenge: an enhanced sensitivity to surface contamination introduced by standard patterning techniques that is exacerbated by the difficulty in cleaning these atomically thin materials. Here, we report a templated MoS2 growth technique wherein Mo is deposited onto atomically stepped sapphire substrates through a SiN stencil with feature sizes down to 100 nm and subsequently sulfurized at high temperature. These films have a quality comparable to the best MoS2 prepared by other methodologies, and the thickness of the resulting MoS2 patterns can be tuned layer-by-layer by controlling the initial Mo deposition. The quality and thickness of the films are confirmed by scanning electron, scanning tunneling, and atomic force microscopies; Raman, photoluminescence, and x-ray photoelectron spectroscopies; and electron transport measurements. This approach critically enables the creation of patterned, single-layer MoS2 films with pristine surfaces suitable for subsequent modification via functionalization and mechanical stacking. Further, we anticipate that this growth technique should be broadly applicable within the family of transition metal dichalcogenides.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4989851</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Atomic force microscopy ; Electron transport ; Heterostructures ; Material properties ; Molybdenum disulfide ; Photoluminescence ; Sapphire ; Sensitivity enhancement ; Substrates ; Thickness</subject><ispartof>Applied physics letters, 2017-06, Vol.110 (26)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-c1bd3501cb02c57d0d731e81cb3ea73e2fefcc26a805d66f7227c5a1a97673823</citedby><cites>FETCH-LOGICAL-c327t-c1bd3501cb02c57d0d731e81cb3ea73e2fefcc26a805d66f7227c5a1a97673823</cites><orcidid>0000-0003-1229-6286 ; 0000-0002-6240-3505 ; 0000-0003-3527-9761 ; 0000-0003-2720-0400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4989851$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27923,27924,76254</link.rule.ids></links><search><creatorcontrib>Young, Justin R.</creatorcontrib><creatorcontrib>Chilcote, Michael</creatorcontrib><creatorcontrib>Barone, Matthew</creatorcontrib><creatorcontrib>Xu, Jinsong</creatorcontrib><creatorcontrib>Katoch, Jyoti</creatorcontrib><creatorcontrib>Luo, Yunqiu Kelly</creatorcontrib><creatorcontrib>Mueller, Sara</creatorcontrib><creatorcontrib>Asel, Thaddeus J.</creatorcontrib><creatorcontrib>Fullerton-Shirey, Susan K.</creatorcontrib><creatorcontrib>Kawakami, Roland</creatorcontrib><creatorcontrib>Gupta, Jay A.</creatorcontrib><creatorcontrib>Brillson, Leonard J.</creatorcontrib><creatorcontrib>Johnston-Halperin, Ezekiel</creatorcontrib><title>Uniform large-area growth of nanotemplated high-quality monolayer MoS2</title><title>Applied physics letters</title><description>Over the past decade, it has become apparent that the extreme sensitivity of 2D crystals to surface interactions presents a unique opportunity to tune material properties through surface functionalization and the mechanical assembly of 2D heterostructures. However, this opportunity carries with it a concurrent challenge: an enhanced sensitivity to surface contamination introduced by standard patterning techniques that is exacerbated by the difficulty in cleaning these atomically thin materials. Here, we report a templated MoS2 growth technique wherein Mo is deposited onto atomically stepped sapphire substrates through a SiN stencil with feature sizes down to 100 nm and subsequently sulfurized at high temperature. These films have a quality comparable to the best MoS2 prepared by other methodologies, and the thickness of the resulting MoS2 patterns can be tuned layer-by-layer by controlling the initial Mo deposition. The quality and thickness of the films are confirmed by scanning electron, scanning tunneling, and atomic force microscopies; Raman, photoluminescence, and x-ray photoelectron spectroscopies; and electron transport measurements. This approach critically enables the creation of patterned, single-layer MoS2 films with pristine surfaces suitable for subsequent modification via functionalization and mechanical stacking. Further, we anticipate that this growth technique should be broadly applicable within the family of transition metal dichalcogenides.</description><subject>Applied physics</subject><subject>Atomic force microscopy</subject><subject>Electron transport</subject><subject>Heterostructures</subject><subject>Material properties</subject><subject>Molybdenum disulfide</subject><subject>Photoluminescence</subject><subject>Sapphire</subject><subject>Sensitivity enhancement</subject><subject>Substrates</subject><subject>Thickness</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90EFLwzAYBuAgCs7pwX8Q8KSQmS8xSXuU4VSYeNCdQ5YmW0fbdGmq7N9b2dCD4OnjhYf3gxehS6AToJLfwuQuz_JMwBEaAVWKcIDsGI0opZzIXMApOuu6zRAF43yEZoum9CHWuDJx5YiJzuBVDJ9pjYPHjWlCcnVbmeQKvC5Xa7LtTVWmHa5DEyqzcxG_hDd2jk68qTp3cbhjtJg9vE-fyPz18Xl6PyeWM5WIhWXBBQW7pMwKVdBCcXDZkLkzijvmnbeWSZNRUUjpFWPKCgMmV1LxjPExutr3tjFse9clvQl9bIaXmgFIYFQqGNT1XtkYui46r9tY1ibuNFD9PZMGfZhpsDd729kymVSG5gd_hPgLdVv4__Df5i9IqXV9</recordid><startdate>20170626</startdate><enddate>20170626</enddate><creator>Young, Justin R.</creator><creator>Chilcote, Michael</creator><creator>Barone, Matthew</creator><creator>Xu, Jinsong</creator><creator>Katoch, Jyoti</creator><creator>Luo, Yunqiu Kelly</creator><creator>Mueller, Sara</creator><creator>Asel, Thaddeus J.</creator><creator>Fullerton-Shirey, Susan K.</creator><creator>Kawakami, Roland</creator><creator>Gupta, Jay A.</creator><creator>Brillson, Leonard J.</creator><creator>Johnston-Halperin, Ezekiel</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1229-6286</orcidid><orcidid>https://orcid.org/0000-0002-6240-3505</orcidid><orcidid>https://orcid.org/0000-0003-3527-9761</orcidid><orcidid>https://orcid.org/0000-0003-2720-0400</orcidid></search><sort><creationdate>20170626</creationdate><title>Uniform large-area growth of nanotemplated high-quality monolayer MoS2</title><author>Young, Justin R. ; Chilcote, Michael ; Barone, Matthew ; Xu, Jinsong ; Katoch, Jyoti ; Luo, Yunqiu Kelly ; Mueller, Sara ; Asel, Thaddeus J. ; Fullerton-Shirey, Susan K. ; Kawakami, Roland ; Gupta, Jay A. ; Brillson, Leonard J. ; Johnston-Halperin, Ezekiel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-c1bd3501cb02c57d0d731e81cb3ea73e2fefcc26a805d66f7227c5a1a97673823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applied physics</topic><topic>Atomic force microscopy</topic><topic>Electron transport</topic><topic>Heterostructures</topic><topic>Material properties</topic><topic>Molybdenum disulfide</topic><topic>Photoluminescence</topic><topic>Sapphire</topic><topic>Sensitivity enhancement</topic><topic>Substrates</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young, Justin R.</creatorcontrib><creatorcontrib>Chilcote, Michael</creatorcontrib><creatorcontrib>Barone, Matthew</creatorcontrib><creatorcontrib>Xu, Jinsong</creatorcontrib><creatorcontrib>Katoch, Jyoti</creatorcontrib><creatorcontrib>Luo, Yunqiu Kelly</creatorcontrib><creatorcontrib>Mueller, Sara</creatorcontrib><creatorcontrib>Asel, Thaddeus J.</creatorcontrib><creatorcontrib>Fullerton-Shirey, Susan K.</creatorcontrib><creatorcontrib>Kawakami, Roland</creatorcontrib><creatorcontrib>Gupta, Jay A.</creatorcontrib><creatorcontrib>Brillson, Leonard J.</creatorcontrib><creatorcontrib>Johnston-Halperin, Ezekiel</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Young, Justin R.</au><au>Chilcote, Michael</au><au>Barone, Matthew</au><au>Xu, Jinsong</au><au>Katoch, Jyoti</au><au>Luo, Yunqiu Kelly</au><au>Mueller, Sara</au><au>Asel, Thaddeus J.</au><au>Fullerton-Shirey, Susan K.</au><au>Kawakami, Roland</au><au>Gupta, Jay A.</au><au>Brillson, Leonard J.</au><au>Johnston-Halperin, Ezekiel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform large-area growth of nanotemplated high-quality monolayer MoS2</atitle><jtitle>Applied physics letters</jtitle><date>2017-06-26</date><risdate>2017</risdate><volume>110</volume><issue>26</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Over the past decade, it has become apparent that the extreme sensitivity of 2D crystals to surface interactions presents a unique opportunity to tune material properties through surface functionalization and the mechanical assembly of 2D heterostructures. However, this opportunity carries with it a concurrent challenge: an enhanced sensitivity to surface contamination introduced by standard patterning techniques that is exacerbated by the difficulty in cleaning these atomically thin materials. Here, we report a templated MoS2 growth technique wherein Mo is deposited onto atomically stepped sapphire substrates through a SiN stencil with feature sizes down to 100 nm and subsequently sulfurized at high temperature. These films have a quality comparable to the best MoS2 prepared by other methodologies, and the thickness of the resulting MoS2 patterns can be tuned layer-by-layer by controlling the initial Mo deposition. The quality and thickness of the films are confirmed by scanning electron, scanning tunneling, and atomic force microscopies; Raman, photoluminescence, and x-ray photoelectron spectroscopies; and electron transport measurements. This approach critically enables the creation of patterned, single-layer MoS2 films with pristine surfaces suitable for subsequent modification via functionalization and mechanical stacking. Further, we anticipate that this growth technique should be broadly applicable within the family of transition metal dichalcogenides.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4989851</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1229-6286</orcidid><orcidid>https://orcid.org/0000-0002-6240-3505</orcidid><orcidid>https://orcid.org/0000-0003-3527-9761</orcidid><orcidid>https://orcid.org/0000-0003-2720-0400</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2017-06, Vol.110 (26)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_1_4989851
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Applied physics
Atomic force microscopy
Electron transport
Heterostructures
Material properties
Molybdenum disulfide
Photoluminescence
Sapphire
Sensitivity enhancement
Substrates
Thickness
title Uniform large-area growth of nanotemplated high-quality monolayer MoS2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A33%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20large-area%20growth%20of%20nanotemplated%20high-quality%20monolayer%20MoS2&rft.jtitle=Applied%20physics%20letters&rft.au=Young,%20Justin%20R.&rft.date=2017-06-26&rft.volume=110&rft.issue=26&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4989851&rft_dat=%3Cproquest_scita%3E2116120671%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-c1bd3501cb02c57d0d731e81cb3ea73e2fefcc26a805d66f7227c5a1a97673823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2116120671&rft_id=info:pmid/&rfr_iscdi=true