Loading…
Spin-orbit torque based magnetization switching in Pt/Cu/[Co/Ni]5 multilayer structures
Spin-Orbit Torque (SOT) in Heavy Metal/Ferromagnet (HM/FM) structures provides an important tool to control the magnetization of FMs and has been an area of interest for memory and logic implementation. Spin transfer torque on the FM in such structures is attributed to two sources: (1) the Spin Hall...
Saved in:
Published in: | Journal of applied physics 2017-12, Vol.122 (21) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Spin-Orbit Torque (SOT) in Heavy Metal/Ferromagnet (HM/FM) structures provides an important tool to control the magnetization of FMs and has been an area of interest for memory and logic implementation. Spin transfer torque on the FM in such structures is attributed to two sources: (1) the Spin Hall effect in the HM and (2) the Rashba-effect at the HM/FM interface. In this work, we study the SOT in a Pt/[Co,Ni] structure and compare its strength with the SOT in a Pt/Cu/[Co,Ni] structure where copper, a metal with a low spin-orbit interaction, is inserted between the Pt (HM) layer and the [Co,Ni] (FM) layer. We use an AC harmonic measurement technique to measure the strength of the SOT on the magnetic thin-film layer. Our measurements show that a significant SOT is exerted on the magnetization even after a 6 nm thick copper layer is inserted between the HM and the FM. Also, we find that this torque can be used to switch a patterned magnetic layer in the presence of an external magnetic field. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4994711 |