Loading…

Monoenergetic ion beam acceleration from transversely confined near-critical plasmas by intense laser pulses

An advanced target for production of high-energy monoenergetic ion beams by intense laser pulses is proposed, in which the near-critical plasma is transversely confined between the high-Z dense wires. It is found that the ion acceleration is significantly enhanced due to the strong magnetic dipole v...

Full description

Saved in:
Bibliographic Details
Published in:Physics of plasmas 2017-09, Vol.24 (9)
Main Authors: Zhang, W. L., Qiao, B., Shen, X. F., Chang, H. X., Zhang, H., Zhou, C. T., He, X. T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-ff5a235f10f80e8b64b5df307e8c54a570157e87ebbbde22d4163a999040aed23
cites cdi_FETCH-LOGICAL-c327t-ff5a235f10f80e8b64b5df307e8c54a570157e87ebbbde22d4163a999040aed23
container_end_page
container_issue 9
container_start_page
container_title Physics of plasmas
container_volume 24
creator Zhang, W. L.
Qiao, B.
Shen, X. F.
Chang, H. X.
Zhang, H.
Zhou, C. T.
He, X. T.
description An advanced target for production of high-energy monoenergetic ion beams by intense laser pulses is proposed, in which the near-critical plasma is transversely confined between the high-Z dense wires. It is found that the ion acceleration is significantly enhanced due to the strong magnetic dipole vortex formed at the rear of the target, where large electron current density gradients from the wires to the vacuum exist. The magnetic dipole vortex helps to realize the contraction of ion momentum phase spaces and reduction of the beam divergence so that monenergetic, highly directed, and collimated ion beams can be obtained. Two-dimensional particle-in-cell simulations have shown that monoenergetic proton beams with a peak energy of 105 MeV and particle number about 2.2 × 1011 are produced by using the advanced target at a laser intensity of 2.7 × 1020 W/cm2 and a pulse duration of 0.65 ps.
doi_str_mv 10.1063/1.4999506
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4999506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116081910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-ff5a235f10f80e8b64b5df307e8c54a570157e87ebbbde22d4163a999040aed23</originalsourceid><addsrcrecordid>eNqdkE9LxDAQxYMouK4e_AYBTwpdJ22StkdZ_AcrXhS8hTSdSJc2qUl3Yb-9WVfw7mkej9_M8B4hlwwWDGRxyxa8rmsB8ojMGFR1VsqSH-91CZmU_OOUnMW4BgAuRTUj_Yt3Hh2GT5w6QzvvaIN6oNoY7DHoae_Y4Ac6Be3iFkPEfkeNd7Zz2FKHOmQmdGlZ93TsdRx0pM2Odm5CF5EmBwMdN33EeE5OrE7i4nfOyfvD_dvyKVu9Pj4v71aZKfJyyqwVOi-EZWArwKqRvBGtLaDEygiuRQlMJF1i0zQt5nnLmSx0ig0cNLZ5MSdXh7tj8F8bjJNa-01w6aXKGZNQsZpBoq4PlAk-xoBWjaEbdNgpBmpfpmLqt8zE3hzYaLrpp5T_wVsf_kA1plTfbQ2E5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116081910</pqid></control><display><type>article</type><title>Monoenergetic ion beam acceleration from transversely confined near-critical plasmas by intense laser pulses</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Zhang, W. L. ; Qiao, B. ; Shen, X. F. ; Chang, H. X. ; Zhang, H. ; Zhou, C. T. ; He, X. T.</creator><creatorcontrib>Zhang, W. L. ; Qiao, B. ; Shen, X. F. ; Chang, H. X. ; Zhang, H. ; Zhou, C. T. ; He, X. T.</creatorcontrib><description>An advanced target for production of high-energy monoenergetic ion beams by intense laser pulses is proposed, in which the near-critical plasma is transversely confined between the high-Z dense wires. It is found that the ion acceleration is significantly enhanced due to the strong magnetic dipole vortex formed at the rear of the target, where large electron current density gradients from the wires to the vacuum exist. The magnetic dipole vortex helps to realize the contraction of ion momentum phase spaces and reduction of the beam divergence so that monenergetic, highly directed, and collimated ion beams can be obtained. Two-dimensional particle-in-cell simulations have shown that monoenergetic proton beams with a peak energy of 105 MeV and particle number about 2.2 × 1011 are produced by using the advanced target at a laser intensity of 2.7 × 1020 W/cm2 and a pulse duration of 0.65 ps.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.4999506</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Acceleration ; Collimation ; Density gradients ; Divergence ; Ion beams ; Laser beams ; Lasers ; Magnetic dipoles ; Particle beams ; Particle in cell technique ; Plasma physics ; Plasmas (physics) ; Proton beams ; Pulse duration</subject><ispartof>Physics of plasmas, 2017-09, Vol.24 (9)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-ff5a235f10f80e8b64b5df307e8c54a570157e87ebbbde22d4163a999040aed23</citedby><cites>FETCH-LOGICAL-c327t-ff5a235f10f80e8b64b5df307e8c54a570157e87ebbbde22d4163a999040aed23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.4999506$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27922,27923,76153</link.rule.ids></links><search><creatorcontrib>Zhang, W. L.</creatorcontrib><creatorcontrib>Qiao, B.</creatorcontrib><creatorcontrib>Shen, X. F.</creatorcontrib><creatorcontrib>Chang, H. X.</creatorcontrib><creatorcontrib>Zhang, H.</creatorcontrib><creatorcontrib>Zhou, C. T.</creatorcontrib><creatorcontrib>He, X. T.</creatorcontrib><title>Monoenergetic ion beam acceleration from transversely confined near-critical plasmas by intense laser pulses</title><title>Physics of plasmas</title><description>An advanced target for production of high-energy monoenergetic ion beams by intense laser pulses is proposed, in which the near-critical plasma is transversely confined between the high-Z dense wires. It is found that the ion acceleration is significantly enhanced due to the strong magnetic dipole vortex formed at the rear of the target, where large electron current density gradients from the wires to the vacuum exist. The magnetic dipole vortex helps to realize the contraction of ion momentum phase spaces and reduction of the beam divergence so that monenergetic, highly directed, and collimated ion beams can be obtained. Two-dimensional particle-in-cell simulations have shown that monoenergetic proton beams with a peak energy of 105 MeV and particle number about 2.2 × 1011 are produced by using the advanced target at a laser intensity of 2.7 × 1020 W/cm2 and a pulse duration of 0.65 ps.</description><subject>Acceleration</subject><subject>Collimation</subject><subject>Density gradients</subject><subject>Divergence</subject><subject>Ion beams</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>Magnetic dipoles</subject><subject>Particle beams</subject><subject>Particle in cell technique</subject><subject>Plasma physics</subject><subject>Plasmas (physics)</subject><subject>Proton beams</subject><subject>Pulse duration</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqdkE9LxDAQxYMouK4e_AYBTwpdJ22StkdZ_AcrXhS8hTSdSJc2qUl3Yb-9WVfw7mkej9_M8B4hlwwWDGRxyxa8rmsB8ojMGFR1VsqSH-91CZmU_OOUnMW4BgAuRTUj_Yt3Hh2GT5w6QzvvaIN6oNoY7DHoae_Y4Ac6Be3iFkPEfkeNd7Zz2FKHOmQmdGlZ93TsdRx0pM2Odm5CF5EmBwMdN33EeE5OrE7i4nfOyfvD_dvyKVu9Pj4v71aZKfJyyqwVOi-EZWArwKqRvBGtLaDEygiuRQlMJF1i0zQt5nnLmSx0ig0cNLZ5MSdXh7tj8F8bjJNa-01w6aXKGZNQsZpBoq4PlAk-xoBWjaEbdNgpBmpfpmLqt8zE3hzYaLrpp5T_wVsf_kA1plTfbQ2E5Q</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Zhang, W. L.</creator><creator>Qiao, B.</creator><creator>Shen, X. F.</creator><creator>Chang, H. X.</creator><creator>Zhang, H.</creator><creator>Zhou, C. T.</creator><creator>He, X. T.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201709</creationdate><title>Monoenergetic ion beam acceleration from transversely confined near-critical plasmas by intense laser pulses</title><author>Zhang, W. L. ; Qiao, B. ; Shen, X. F. ; Chang, H. X. ; Zhang, H. ; Zhou, C. T. ; He, X. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-ff5a235f10f80e8b64b5df307e8c54a570157e87ebbbde22d4163a999040aed23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acceleration</topic><topic>Collimation</topic><topic>Density gradients</topic><topic>Divergence</topic><topic>Ion beams</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>Magnetic dipoles</topic><topic>Particle beams</topic><topic>Particle in cell technique</topic><topic>Plasma physics</topic><topic>Plasmas (physics)</topic><topic>Proton beams</topic><topic>Pulse duration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, W. L.</creatorcontrib><creatorcontrib>Qiao, B.</creatorcontrib><creatorcontrib>Shen, X. F.</creatorcontrib><creatorcontrib>Chang, H. X.</creatorcontrib><creatorcontrib>Zhang, H.</creatorcontrib><creatorcontrib>Zhou, C. T.</creatorcontrib><creatorcontrib>He, X. T.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, W. L.</au><au>Qiao, B.</au><au>Shen, X. F.</au><au>Chang, H. X.</au><au>Zhang, H.</au><au>Zhou, C. T.</au><au>He, X. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monoenergetic ion beam acceleration from transversely confined near-critical plasmas by intense laser pulses</atitle><jtitle>Physics of plasmas</jtitle><date>2017-09</date><risdate>2017</risdate><volume>24</volume><issue>9</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>An advanced target for production of high-energy monoenergetic ion beams by intense laser pulses is proposed, in which the near-critical plasma is transversely confined between the high-Z dense wires. It is found that the ion acceleration is significantly enhanced due to the strong magnetic dipole vortex formed at the rear of the target, where large electron current density gradients from the wires to the vacuum exist. The magnetic dipole vortex helps to realize the contraction of ion momentum phase spaces and reduction of the beam divergence so that monenergetic, highly directed, and collimated ion beams can be obtained. Two-dimensional particle-in-cell simulations have shown that monoenergetic proton beams with a peak energy of 105 MeV and particle number about 2.2 × 1011 are produced by using the advanced target at a laser intensity of 2.7 × 1020 W/cm2 and a pulse duration of 0.65 ps.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4999506</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2017-09, Vol.24 (9)
issn 1070-664X
1089-7674
language eng
recordid cdi_scitation_primary_10_1063_1_4999506
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics)
subjects Acceleration
Collimation
Density gradients
Divergence
Ion beams
Laser beams
Lasers
Magnetic dipoles
Particle beams
Particle in cell technique
Plasma physics
Plasmas (physics)
Proton beams
Pulse duration
title Monoenergetic ion beam acceleration from transversely confined near-critical plasmas by intense laser pulses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A26%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monoenergetic%20ion%20beam%20acceleration%20from%20transversely%20confined%20near-critical%20plasmas%20by%20intense%20laser%20pulses&rft.jtitle=Physics%20of%20plasmas&rft.au=Zhang,%20W.%20L.&rft.date=2017-09&rft.volume=24&rft.issue=9&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.4999506&rft_dat=%3Cproquest_scita%3E2116081910%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-ff5a235f10f80e8b64b5df307e8c54a570157e87ebbbde22d4163a999040aed23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2116081910&rft_id=info:pmid/&rfr_iscdi=true