Loading…

Nonlinear multiphysics and multiscale modeling of dynamic ferromagnetic–thermal problems

A coupled ferromagnetic–thermal solver is developed for the multiphysics and multiscale modeling and simulation of nonlinear magnetic materials in the time domain. By adopting a temperature-dependent dynamic hysteresis model, the power loss is characterized and calculated from the solution of Maxwel...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2018-03, Vol.123 (10)
Main Authors: Yan, Su, Kotulski, Joseph D., Jin, Jian-Ming
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-cd7b6ba00aae291d2aecdb35c8727ebb586551de774d2d62f58eaffd660dc7c03
cites cdi_FETCH-LOGICAL-c361t-cd7b6ba00aae291d2aecdb35c8727ebb586551de774d2d62f58eaffd660dc7c03
container_end_page
container_issue 10
container_start_page
container_title Journal of applied physics
container_volume 123
creator Yan, Su
Kotulski, Joseph D.
Jin, Jian-Ming
description A coupled ferromagnetic–thermal solver is developed for the multiphysics and multiscale modeling and simulation of nonlinear magnetic materials in the time domain. By adopting a temperature-dependent dynamic hysteresis model, the power loss is characterized and calculated from the solution of Maxwell's equations, which serves as the heat source for the thermal problem. By solving the thermal problem, the temperature change is obtained, and its effect on the magnetic material property can be quantified, which is then coupled back to Maxwell's equations. Due to different temporal characteristics of the electromagnetic fields and the thermal response, the resulting coupled ferromagnetic–thermal system has two significantly different time scales. Such a temporal multiscale issue is addressed with a proposed multiscale time integration method to account for the multiscale coupling between the two physics. With the proposed multiphysics and multiscale modeling method, both the electromagnetic fields and the thermal responses can be captured accurately in a dynamic operation.
doi_str_mv 10.1063/1.5005855
format article
fullrecord <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5005855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jap</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-cd7b6ba00aae291d2aecdb35c8727ebb586551de774d2d62f58eaffd660dc7c03</originalsourceid><addsrcrecordid>eNqd0M1KxDAUBeAgCo6jC9-guFPomLSTpl3K4B8MutGNm5De3MxE2qQkUZid7-Ab-iTO0AH3rg4cPs7iEHLO6IzRqrxmM04przk_IBNG6yYXnNNDMqG0YHndiOaYnMT4TiljddlMyNuTd511qELWf3TJDutNtBAz5fRYRFAdZr3XuGWrzJtMb5zqLWQGQ_C9WjlMFn6-vtMaQ6-6bAi-7bCPp-TIqC7i2T6n5PXu9mXxkC-f7x8XN8scyoqlHLRoq1ZRqhQWDdOFQtBtyaEWhcC25XXFOdMoxFwXuioMr1EZo6uKahBAyym5GHd9TFZGsAlhDd45hCTZvOCCsS26HBEEH2NAI4dgexU2klG5e04yuX9ua69Gu9tSyXr3P_zpwx-UgzblL3hXgC8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonlinear multiphysics and multiscale modeling of dynamic ferromagnetic–thermal problems</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Yan, Su ; Kotulski, Joseph D. ; Jin, Jian-Ming</creator><creatorcontrib>Yan, Su ; Kotulski, Joseph D. ; Jin, Jian-Ming</creatorcontrib><description>A coupled ferromagnetic–thermal solver is developed for the multiphysics and multiscale modeling and simulation of nonlinear magnetic materials in the time domain. By adopting a temperature-dependent dynamic hysteresis model, the power loss is characterized and calculated from the solution of Maxwell's equations, which serves as the heat source for the thermal problem. By solving the thermal problem, the temperature change is obtained, and its effect on the magnetic material property can be quantified, which is then coupled back to Maxwell's equations. Due to different temporal characteristics of the electromagnetic fields and the thermal response, the resulting coupled ferromagnetic–thermal system has two significantly different time scales. Such a temporal multiscale issue is addressed with a proposed multiscale time integration method to account for the multiscale coupling between the two physics. With the proposed multiphysics and multiscale modeling method, both the electromagnetic fields and the thermal responses can be captured accurately in a dynamic operation.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5005855</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><ispartof>Journal of applied physics, 2018-03, Vol.123 (10)</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-cd7b6ba00aae291d2aecdb35c8727ebb586551de774d2d62f58eaffd660dc7c03</citedby><cites>FETCH-LOGICAL-c361t-cd7b6ba00aae291d2aecdb35c8727ebb586551de774d2d62f58eaffd660dc7c03</cites><orcidid>0000-0002-7376-3493 ; 0000000273763493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1425711$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Su</creatorcontrib><creatorcontrib>Kotulski, Joseph D.</creatorcontrib><creatorcontrib>Jin, Jian-Ming</creatorcontrib><title>Nonlinear multiphysics and multiscale modeling of dynamic ferromagnetic–thermal problems</title><title>Journal of applied physics</title><description>A coupled ferromagnetic–thermal solver is developed for the multiphysics and multiscale modeling and simulation of nonlinear magnetic materials in the time domain. By adopting a temperature-dependent dynamic hysteresis model, the power loss is characterized and calculated from the solution of Maxwell's equations, which serves as the heat source for the thermal problem. By solving the thermal problem, the temperature change is obtained, and its effect on the magnetic material property can be quantified, which is then coupled back to Maxwell's equations. Due to different temporal characteristics of the electromagnetic fields and the thermal response, the resulting coupled ferromagnetic–thermal system has two significantly different time scales. Such a temporal multiscale issue is addressed with a proposed multiscale time integration method to account for the multiscale coupling between the two physics. With the proposed multiphysics and multiscale modeling method, both the electromagnetic fields and the thermal responses can be captured accurately in a dynamic operation.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqd0M1KxDAUBeAgCo6jC9-guFPomLSTpl3K4B8MutGNm5De3MxE2qQkUZid7-Ab-iTO0AH3rg4cPs7iEHLO6IzRqrxmM04przk_IBNG6yYXnNNDMqG0YHndiOaYnMT4TiljddlMyNuTd511qELWf3TJDutNtBAz5fRYRFAdZr3XuGWrzJtMb5zqLWQGQ_C9WjlMFn6-vtMaQ6-6bAi-7bCPp-TIqC7i2T6n5PXu9mXxkC-f7x8XN8scyoqlHLRoq1ZRqhQWDdOFQtBtyaEWhcC25XXFOdMoxFwXuioMr1EZo6uKahBAyym5GHd9TFZGsAlhDd45hCTZvOCCsS26HBEEH2NAI4dgexU2klG5e04yuX9ua69Gu9tSyXr3P_zpwx-UgzblL3hXgC8</recordid><startdate>20180314</startdate><enddate>20180314</enddate><creator>Yan, Su</creator><creator>Kotulski, Joseph D.</creator><creator>Jin, Jian-Ming</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7376-3493</orcidid><orcidid>https://orcid.org/0000000273763493</orcidid></search><sort><creationdate>20180314</creationdate><title>Nonlinear multiphysics and multiscale modeling of dynamic ferromagnetic–thermal problems</title><author>Yan, Su ; Kotulski, Joseph D. ; Jin, Jian-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-cd7b6ba00aae291d2aecdb35c8727ebb586551de774d2d62f58eaffd660dc7c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Su</creatorcontrib><creatorcontrib>Kotulski, Joseph D.</creatorcontrib><creatorcontrib>Jin, Jian-Ming</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Su</au><au>Kotulski, Joseph D.</au><au>Jin, Jian-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear multiphysics and multiscale modeling of dynamic ferromagnetic–thermal problems</atitle><jtitle>Journal of applied physics</jtitle><date>2018-03-14</date><risdate>2018</risdate><volume>123</volume><issue>10</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>A coupled ferromagnetic–thermal solver is developed for the multiphysics and multiscale modeling and simulation of nonlinear magnetic materials in the time domain. By adopting a temperature-dependent dynamic hysteresis model, the power loss is characterized and calculated from the solution of Maxwell's equations, which serves as the heat source for the thermal problem. By solving the thermal problem, the temperature change is obtained, and its effect on the magnetic material property can be quantified, which is then coupled back to Maxwell's equations. Due to different temporal characteristics of the electromagnetic fields and the thermal response, the resulting coupled ferromagnetic–thermal system has two significantly different time scales. Such a temporal multiscale issue is addressed with a proposed multiscale time integration method to account for the multiscale coupling between the two physics. With the proposed multiphysics and multiscale modeling method, both the electromagnetic fields and the thermal responses can be captured accurately in a dynamic operation.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5005855</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7376-3493</orcidid><orcidid>https://orcid.org/0000000273763493</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2018-03, Vol.123 (10)
issn 0021-8979
1089-7550
language eng
recordid cdi_scitation_primary_10_1063_1_5005855
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
title Nonlinear multiphysics and multiscale modeling of dynamic ferromagnetic–thermal problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A53%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20multiphysics%20and%20multiscale%20modeling%20of%20dynamic%20ferromagnetic%E2%80%93thermal%20problems&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Yan,%20Su&rft.date=2018-03-14&rft.volume=123&rft.issue=10&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5005855&rft_dat=%3Cscitation_osti_%3Ejap%3C/scitation_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-cd7b6ba00aae291d2aecdb35c8727ebb586551de774d2d62f58eaffd660dc7c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true