Loading…

Heavy Mg-doping of (Al,Ga)N films for potential applications in deep ultraviolet light-emitting structures

Doping of high aluminum-containing (Al,Ga)N thin films has remained a challenging problem that has hindered progress in the development of deep ultraviolet light-emitters. This paper reports on the synthesis and use of heavily doped (Al,Ga)N films in deep ultraviolet (∼274 nm) light-emitting structu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2018-03, Vol.123 (9)
Main Authors: Liang, Y. H., Towe, E.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Doping of high aluminum-containing (Al,Ga)N thin films has remained a challenging problem that has hindered progress in the development of deep ultraviolet light-emitters. This paper reports on the synthesis and use of heavily doped (Al,Ga)N films in deep ultraviolet (∼274 nm) light-emitting structures; these structures were synthesized by molecular beam epitaxy under liquid-metal growth conditions that facilitate the incorporation of extremely high density of Mg dopant impurities (up to 5 × 1019 cm−3) into aluminum-rich (Al,Ga)N thin films. Prototypical light-emitting diode structures incorporating Al0.7Ga0.3N films doped with Mg impurities that ionize to give free hole carrier concentrations of up to 6 × 1017 cm−3 exhibit external quantum efficiencies of up 0.56%; this is an improvement from previous devices made from molecular beam epitaxy-grown materials. This improvement is believed to be due to the high hole carrier concentration enabled by the relatively low activation energy of 220 meV compared to the expected values of 408–507 meV for Al0.7Ga0.3N films.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.5009937