Loading…
Enhancement of the conversion efficiency of thin film kesterite solar cell
C u 2 ZnSn S 4 ( CZTS ) is a non-toxic earth abundant material and a promising quaternary semiconductor compound of groups I − I I − I V − V I having a kesterite symmetrical structure. Due to its optimum direct bandgap, it has been considered as a suitable material for absorber layers for photovolta...
Saved in:
Published in: | Journal of renewable and sustainable energy 2018-05, Vol.10 (3) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | C
u
2
ZnSn
S
4
(
CZTS
) is a non-toxic earth abundant material and a promising quaternary semiconductor compound of groups
I
−
I
I
−
I
V
−
V
I having a kesterite symmetrical structure. Due to its optimum direct bandgap, it has been considered as a suitable material for absorber layers for photovoltaic cell applications. This paper presents the numerical simulation and modeling of
CZTS based thin film kesterite photovoltaic cells using SCAP-1D software. The influence of device parameters such as the carrier concentration, thickness, densities of absorber, buffer and window layers, defect densities and the temperature effect on the performance of the
Z
n
O
/
C
d
S
/
CZTS
/
M
o photovoltaic cell structure are analyzed. Defect densities are added to the absorber layer and the interface between the buffer layer and the absorber layer. This type of solar cell does not comprise any toxic material and can lead to non-toxic thin film photovoltaic cells with outstanding optical properties. In this work, promising optimized results had been achieved with a conversion efficiency of 23.72%, a fill factor of 82.54%, a short-circuit current (
J
s
c
) of 44.87
mA
/
cm
2, and an open circuit voltage
(
V
o
c
) of 0.64V. |
---|---|
ISSN: | 1941-7012 1941-7012 |
DOI: | 10.1063/1.5023478 |