Loading…

Fabrication and characterization of akaganeite/graphene oxide nanocomposite for arsenic removal from water

In this study, akageneite/graphene oxide (β-FeOOH/GO) nanocomposite was fabricated by in situ forced hydrolysis of iron (III) chloride. The structure and morphology of β-FeOOH/GO were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron micr...

Full description

Saved in:
Bibliographic Details
Main Authors: Trang, Nguyen Thi Thuy, Thy, Lu Thi Mong, Cuong, Pham Mai, Tu, Tran Hoang, Hieu, Nguyen Huu
Format: Conference Proceeding
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, akageneite/graphene oxide (β-FeOOH/GO) nanocomposite was fabricated by in situ forced hydrolysis of iron (III) chloride. The structure and morphology of β-FeOOH/GO were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and Brunauer–Emmett– Teller (BET) specific surface area. XRD, FTIR, and TEM results indicated that β-FeOOH nanoparticles were successfully decorated on the surface of GO nanosheets. The BET specific surface area of β-FeOOH/GO was observed of 97.94 m2/g. The nanocomposite was used as an adsorbent for removal of arsenic (As5+) from water. Adsorption experiments were carried out to investigate contact time, pH values, and As5+ initial concentrations. The adsorption equilibrium time was reached within 180 minutes. The adsorption was well-fitted by a pseudo-second-order kinetic and Langmuir isotherm model. The maximum adsorption capacity of β-FeOOH/GO for As5+ ions of 94.34 mg/g that was calculated from the Langmuir model at pH 3. Accordingly, the nanocomposite β-FeOOH/GO could be considered as a highly efficient adsorbent for removing arsenic from water.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.5033401