Loading…

Optimal heliocentric trajectories for solar sail with minimum area

The fixed-time heliocentric trajectory optimization problem is considered for planar solar sail with minimum area. Necessary optimality conditions are derived, a numerical method for solving the problem is developed, and numerical examples of optimal trajectories to Mars, Venus and Mercury are prese...

Full description

Saved in:
Bibliographic Details
Main Author: Petukhov, Vyacheslav G.
Format: Conference Proceeding
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1959
creator Petukhov, Vyacheslav G.
description The fixed-time heliocentric trajectory optimization problem is considered for planar solar sail with minimum area. Necessary optimality conditions are derived, a numerical method for solving the problem is developed, and numerical examples of optimal trajectories to Mars, Venus and Mercury are presented. The dependences of the minimum area of the solar sail from the date of departure from the Earth, the time of flight and the departing hyperbolic excess of velocity are analyzed. In particular, for the rendezvous problem (approaching a target planet with zero relative velocity) with zero departing hyperbolic excess of velocity for a flight duration of 1200 days it was found that the minimum area-to-mass ratio should be about 12 m2/kg for trajectory to Venus, 23.5 m2/kg for the trajectory to Mercury and 25 m2/kg for trajectory to Mars.
doi_str_mv 10.1063/1.5034616
format conference_proceeding
fullrecord <record><control><sourceid>scitation</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5034616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>acp</sourcerecordid><originalsourceid>FETCH-LOGICAL-s190t-4bb024b00bfc15ee2bb8f42e72e528145165593a2e0b17ae7fb4b9bcbfda1bfa3</originalsourceid><addsrcrecordid>eNotj0tLAzEUhYMoOFYX_oOshan35jGZWWrRKhS6UXA35MaEpsyjJBHx31uxm3PO6uN8jN0iLBEaeY9LDVI12JyxCrXG2hz3OasAOlULJT8u2VXOewDRGdNW7HF7KHG0A9_5Ic7OTyVFx0uye-_KnKLPPMyJ53mwx7Rx4N-x7PgYpzh-jdwmb6_ZRbBD9jenXrD356e31Uu92a5fVw-bOmMHpVZEIBQBUHCovRdEbVDCG-G1aFFpbLTupBUeCI31JpCijhyFT4sUrFywu39udrHYEuepP6Tj9_TTI_R_9j32J3v5C8gJTbo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimal heliocentric trajectories for solar sail with minimum area</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Petukhov, Vyacheslav G.</creator><contributor>Leonov, Gennady ; Morosov, Nikita ; Yushkov, Mikhail ; Mekhonoshina, Mariia ; Kustova, Elena</contributor><creatorcontrib>Petukhov, Vyacheslav G. ; Leonov, Gennady ; Morosov, Nikita ; Yushkov, Mikhail ; Mekhonoshina, Mariia ; Kustova, Elena</creatorcontrib><description>The fixed-time heliocentric trajectory optimization problem is considered for planar solar sail with minimum area. Necessary optimality conditions are derived, a numerical method for solving the problem is developed, and numerical examples of optimal trajectories to Mars, Venus and Mercury are presented. The dependences of the minimum area of the solar sail from the date of departure from the Earth, the time of flight and the departing hyperbolic excess of velocity are analyzed. In particular, for the rendezvous problem (approaching a target planet with zero relative velocity) with zero departing hyperbolic excess of velocity for a flight duration of 1200 days it was found that the minimum area-to-mass ratio should be about 12 m2/kg for trajectory to Venus, 23.5 m2/kg for the trajectory to Mercury and 25 m2/kg for trajectory to Mars.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5034616</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><ispartof>AIP conference proceedings, 2018, Vol.1959 (1)</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Leonov, Gennady</contributor><contributor>Morosov, Nikita</contributor><contributor>Yushkov, Mikhail</contributor><contributor>Mekhonoshina, Mariia</contributor><contributor>Kustova, Elena</contributor><creatorcontrib>Petukhov, Vyacheslav G.</creatorcontrib><title>Optimal heliocentric trajectories for solar sail with minimum area</title><title>AIP conference proceedings</title><description>The fixed-time heliocentric trajectory optimization problem is considered for planar solar sail with minimum area. Necessary optimality conditions are derived, a numerical method for solving the problem is developed, and numerical examples of optimal trajectories to Mars, Venus and Mercury are presented. The dependences of the minimum area of the solar sail from the date of departure from the Earth, the time of flight and the departing hyperbolic excess of velocity are analyzed. In particular, for the rendezvous problem (approaching a target planet with zero relative velocity) with zero departing hyperbolic excess of velocity for a flight duration of 1200 days it was found that the minimum area-to-mass ratio should be about 12 m2/kg for trajectory to Venus, 23.5 m2/kg for the trajectory to Mercury and 25 m2/kg for trajectory to Mars.</description><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid/><recordid>eNotj0tLAzEUhYMoOFYX_oOshan35jGZWWrRKhS6UXA35MaEpsyjJBHx31uxm3PO6uN8jN0iLBEaeY9LDVI12JyxCrXG2hz3OasAOlULJT8u2VXOewDRGdNW7HF7KHG0A9_5Ic7OTyVFx0uye-_KnKLPPMyJ53mwx7Rx4N-x7PgYpzh-jdwmb6_ZRbBD9jenXrD356e31Uu92a5fVw-bOmMHpVZEIBQBUHCovRdEbVDCG-G1aFFpbLTupBUeCI31JpCijhyFT4sUrFywu39udrHYEuepP6Tj9_TTI_R_9j32J3v5C8gJTbo</recordid><startdate>20180502</startdate><enddate>20180502</enddate><creator>Petukhov, Vyacheslav G.</creator><scope/></search><sort><creationdate>20180502</creationdate><title>Optimal heliocentric trajectories for solar sail with minimum area</title><author>Petukhov, Vyacheslav G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s190t-4bb024b00bfc15ee2bb8f42e72e528145165593a2e0b17ae7fb4b9bcbfda1bfa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petukhov, Vyacheslav G.</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petukhov, Vyacheslav G.</au><au>Leonov, Gennady</au><au>Morosov, Nikita</au><au>Yushkov, Mikhail</au><au>Mekhonoshina, Mariia</au><au>Kustova, Elena</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal heliocentric trajectories for solar sail with minimum area</atitle><btitle>AIP conference proceedings</btitle><date>2018-05-02</date><risdate>2018</risdate><volume>1959</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The fixed-time heliocentric trajectory optimization problem is considered for planar solar sail with minimum area. Necessary optimality conditions are derived, a numerical method for solving the problem is developed, and numerical examples of optimal trajectories to Mars, Venus and Mercury are presented. The dependences of the minimum area of the solar sail from the date of departure from the Earth, the time of flight and the departing hyperbolic excess of velocity are analyzed. In particular, for the rendezvous problem (approaching a target planet with zero relative velocity) with zero departing hyperbolic excess of velocity for a flight duration of 1200 days it was found that the minimum area-to-mass ratio should be about 12 m2/kg for trajectory to Venus, 23.5 m2/kg for the trajectory to Mercury and 25 m2/kg for trajectory to Mars.</abstract><doi>10.1063/1.5034616</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2018, Vol.1959 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_5034616
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
title Optimal heliocentric trajectories for solar sail with minimum area
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A19%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20heliocentric%20trajectories%20for%20solar%20sail%20with%20minimum%20area&rft.btitle=AIP%20conference%20proceedings&rft.au=Petukhov,%20Vyacheslav%20G.&rft.date=2018-05-02&rft.volume=1959&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5034616&rft_dat=%3Cscitation%3Eacp%3C/scitation%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-s190t-4bb024b00bfc15ee2bb8f42e72e528145165593a2e0b17ae7fb4b9bcbfda1bfa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true