Loading…
Numerical investigation of the aerodynamic loads and hinge moments of the flap with boundary layer control
The paper discusses the approach of numerical simulation of the boundary layer control (BLC) on deflected flap for suppression of flow separation. Computational investigations were carried out using a program based on numerically solving the Reynolds averaged Navier–Stokes equations. The aim of this...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The paper discusses the approach of numerical simulation of the boundary layer control (BLC) on deflected flap for suppression of flow separation. Computational investigations were carried out using a program based on numerically solving the Reynolds averaged Navier–Stokes equations. The aim of this work is numerical investigation of the aerodynamic loads and hinge moments of the flap with BLC with influence of the walls of the wind tunnel. We have made a calculation of the airfoil section with flap deflected by 20° and 60° with variation of blowing momentum coefficient of Cμ=0÷0.1. The comparison of the calculation results with the experimental values of lift coefficient, pitching moment and pressure coefficient is presented. The pressure distribution on all surface of the wing and the threedimensional flow pattern of the wing with BLC, influence of the walls of the wind tunnel and the aerodynamic loads and hinge moments of the BLC flap are given. It is shown that the 20° flap increases the jet momentum coefficient from Cμ=0 to Cμ=0.1, leads to an increase of the hinge moment coefficient almost in 2 times, and the 60° flap increases the jet momentum coefficient from Cμ=0 to Cμ=0.113, leads to an increase of the hinge moment coefficient almost 3.5 times. The magnitude of the hinge moment on the flap with BLC rises due to the increase of the total aerodynamic force acting on the flap. As a result, the jet blowing on the plain flap leads to the significant increase of the hinge moment that must be considered when designing the high-lift devices with BLC. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.5034652 |