Loading…

Study of adhesion and friction drag on a rough hydrophobic surface: Sandblasted aluminum

Roughness is a crucial prerequisite for fabricating superhydrophobic surfaces. However, the enormous economic cost of fabricating rough surfaces seriously limits the industrial application of superhydrophobic surfaces. To overcome this drawback, we present herein a simple, low cost, user-friendly, a...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2018-07, Vol.30 (7)
Main Authors: Li, Longyang, Zhu, Jingfang, Zhi, Shudi, Liu, Eryong, Wang, Gang, Zeng, Zhixiang, Zhao, Wenjie, Xue, Qunji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-1af8b2c164a0b45a1245b75f8b28b253e9910e16596ef68dd78c1454b67c9a9b3
cites cdi_FETCH-LOGICAL-c358t-1af8b2c164a0b45a1245b75f8b28b253e9910e16596ef68dd78c1454b67c9a9b3
container_end_page
container_issue 7
container_start_page
container_title Physics of fluids (1994)
container_volume 30
creator Li, Longyang
Zhu, Jingfang
Zhi, Shudi
Liu, Eryong
Wang, Gang
Zeng, Zhixiang
Zhao, Wenjie
Xue, Qunji
description Roughness is a crucial prerequisite for fabricating superhydrophobic surfaces. However, the enormous economic cost of fabricating rough surfaces seriously limits the industrial application of superhydrophobic surfaces. To overcome this drawback, we present herein a simple, low cost, user-friendly, and rapid method to fabricate rough surfaces with micro- and nanostructured features. By modifying the sandblasting pressure, we fabricated aluminum surfaces of varying roughness, which we then decorated with polydimethylsiloxane to reduce the surface energy. The contact angle, slip velocity, slip length, and drag-reduction ratio all increase with increasing sandblasting pressure, and the maximum contact angle of a droplet, the slip velocity, the length, and the drag-reduction ratio are 151.74 ± 1°, 0.1617 m/s, 0.04276 mm, and 19.2%, respectively, for a sandblasting pressure of 0.8 MPa. The adhesive force of the samples decreases with increasing sandblasting pressure to a minimum of 0.096 mN. The process by which trapped air escapes from the sample surface is visualized by using fluent software, and the results show that the low adhesive and low friction properties of the superhydrophobic surface, which are due to air being trapped in the space between protrusions, may effectively prevent water from moving into these spaces.
doi_str_mv 10.1063/1.5039712
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5039712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087553925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-1af8b2c164a0b45a1245b75f8b28b253e9910e16596ef68dd78c1454b67c9a9b3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_0HAk8LWZHeTbLxJ8QsKHqrgLeSzu6XdrMnm0H9vlvYsDMzMyzMzzAvALUYLjGj1iBcEVZzh8gzMMGp4wSil51PNUEFphS_BVYxbhDJV0hn4WY_JHKB3UJrWxs73UPYGutDpcWpMkBs4iTD4tGlhezDBD61XnYYxBSe1fYLrPKJ2Mo7WQLlL-65P-2tw4eQu2ptTnoPv15ev5Xux-nz7WD6vCl2RZiywdI0qNaa1RKomEpc1UYxMYg5SWc4xspgSTq2jjTGs0bgmtaJMc8lVNQd3x71D8L_JxlFsfQp9PilK1DBC8p8kU_dHSgcfY7BODKHby3AQGInJOIHFybjMPhzZqLtRTi78A_8BAZpspw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087553925</pqid></control><display><type>article</type><title>Study of adhesion and friction drag on a rough hydrophobic surface: Sandblasted aluminum</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Li, Longyang ; Zhu, Jingfang ; Zhi, Shudi ; Liu, Eryong ; Wang, Gang ; Zeng, Zhixiang ; Zhao, Wenjie ; Xue, Qunji</creator><creatorcontrib>Li, Longyang ; Zhu, Jingfang ; Zhi, Shudi ; Liu, Eryong ; Wang, Gang ; Zeng, Zhixiang ; Zhao, Wenjie ; Xue, Qunji</creatorcontrib><description>Roughness is a crucial prerequisite for fabricating superhydrophobic surfaces. However, the enormous economic cost of fabricating rough surfaces seriously limits the industrial application of superhydrophobic surfaces. To overcome this drawback, we present herein a simple, low cost, user-friendly, and rapid method to fabricate rough surfaces with micro- and nanostructured features. By modifying the sandblasting pressure, we fabricated aluminum surfaces of varying roughness, which we then decorated with polydimethylsiloxane to reduce the surface energy. The contact angle, slip velocity, slip length, and drag-reduction ratio all increase with increasing sandblasting pressure, and the maximum contact angle of a droplet, the slip velocity, the length, and the drag-reduction ratio are 151.74 ± 1°, 0.1617 m/s, 0.04276 mm, and 19.2%, respectively, for a sandblasting pressure of 0.8 MPa. The adhesive force of the samples decreases with increasing sandblasting pressure to a minimum of 0.096 mN. The process by which trapped air escapes from the sample surface is visualized by using fluent software, and the results show that the low adhesive and low friction properties of the superhydrophobic surface, which are due to air being trapped in the space between protrusions, may effectively prevent water from moving into these spaces.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.5039712</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aluminum ; Contact angle ; Contact pressure ; Drag reduction ; Fluid dynamics ; Friction drag ; Hydrophobic surfaces ; Hydrophobicity ; Industrial applications ; Physics ; Polydimethylsiloxane ; Roughness ; Sandblasting ; Slip ; Slip velocity ; Surface energy</subject><ispartof>Physics of fluids (1994), 2018-07, Vol.30 (7)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-1af8b2c164a0b45a1245b75f8b28b253e9910e16596ef68dd78c1454b67c9a9b3</citedby><cites>FETCH-LOGICAL-c358t-1af8b2c164a0b45a1245b75f8b28b253e9910e16596ef68dd78c1454b67c9a9b3</cites><orcidid>0000-0002-2094-9286 ; 0000-0003-2742-130X ; 0000-0002-2081-6387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1559,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Longyang</creatorcontrib><creatorcontrib>Zhu, Jingfang</creatorcontrib><creatorcontrib>Zhi, Shudi</creatorcontrib><creatorcontrib>Liu, Eryong</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Zeng, Zhixiang</creatorcontrib><creatorcontrib>Zhao, Wenjie</creatorcontrib><creatorcontrib>Xue, Qunji</creatorcontrib><title>Study of adhesion and friction drag on a rough hydrophobic surface: Sandblasted aluminum</title><title>Physics of fluids (1994)</title><description>Roughness is a crucial prerequisite for fabricating superhydrophobic surfaces. However, the enormous economic cost of fabricating rough surfaces seriously limits the industrial application of superhydrophobic surfaces. To overcome this drawback, we present herein a simple, low cost, user-friendly, and rapid method to fabricate rough surfaces with micro- and nanostructured features. By modifying the sandblasting pressure, we fabricated aluminum surfaces of varying roughness, which we then decorated with polydimethylsiloxane to reduce the surface energy. The contact angle, slip velocity, slip length, and drag-reduction ratio all increase with increasing sandblasting pressure, and the maximum contact angle of a droplet, the slip velocity, the length, and the drag-reduction ratio are 151.74 ± 1°, 0.1617 m/s, 0.04276 mm, and 19.2%, respectively, for a sandblasting pressure of 0.8 MPa. The adhesive force of the samples decreases with increasing sandblasting pressure to a minimum of 0.096 mN. The process by which trapped air escapes from the sample surface is visualized by using fluent software, and the results show that the low adhesive and low friction properties of the superhydrophobic surface, which are due to air being trapped in the space between protrusions, may effectively prevent water from moving into these spaces.</description><subject>Aluminum</subject><subject>Contact angle</subject><subject>Contact pressure</subject><subject>Drag reduction</subject><subject>Fluid dynamics</subject><subject>Friction drag</subject><subject>Hydrophobic surfaces</subject><subject>Hydrophobicity</subject><subject>Industrial applications</subject><subject>Physics</subject><subject>Polydimethylsiloxane</subject><subject>Roughness</subject><subject>Sandblasting</subject><subject>Slip</subject><subject>Slip velocity</subject><subject>Surface energy</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_0HAk8LWZHeTbLxJ8QsKHqrgLeSzu6XdrMnm0H9vlvYsDMzMyzMzzAvALUYLjGj1iBcEVZzh8gzMMGp4wSil51PNUEFphS_BVYxbhDJV0hn4WY_JHKB3UJrWxs73UPYGutDpcWpMkBs4iTD4tGlhezDBD61XnYYxBSe1fYLrPKJ2Mo7WQLlL-65P-2tw4eQu2ptTnoPv15ev5Xux-nz7WD6vCl2RZiywdI0qNaa1RKomEpc1UYxMYg5SWc4xspgSTq2jjTGs0bgmtaJMc8lVNQd3x71D8L_JxlFsfQp9PilK1DBC8p8kU_dHSgcfY7BODKHby3AQGInJOIHFybjMPhzZqLtRTi78A_8BAZpspw</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Li, Longyang</creator><creator>Zhu, Jingfang</creator><creator>Zhi, Shudi</creator><creator>Liu, Eryong</creator><creator>Wang, Gang</creator><creator>Zeng, Zhixiang</creator><creator>Zhao, Wenjie</creator><creator>Xue, Qunji</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2094-9286</orcidid><orcidid>https://orcid.org/0000-0003-2742-130X</orcidid><orcidid>https://orcid.org/0000-0002-2081-6387</orcidid></search><sort><creationdate>201807</creationdate><title>Study of adhesion and friction drag on a rough hydrophobic surface: Sandblasted aluminum</title><author>Li, Longyang ; Zhu, Jingfang ; Zhi, Shudi ; Liu, Eryong ; Wang, Gang ; Zeng, Zhixiang ; Zhao, Wenjie ; Xue, Qunji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-1af8b2c164a0b45a1245b75f8b28b253e9910e16596ef68dd78c1454b67c9a9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum</topic><topic>Contact angle</topic><topic>Contact pressure</topic><topic>Drag reduction</topic><topic>Fluid dynamics</topic><topic>Friction drag</topic><topic>Hydrophobic surfaces</topic><topic>Hydrophobicity</topic><topic>Industrial applications</topic><topic>Physics</topic><topic>Polydimethylsiloxane</topic><topic>Roughness</topic><topic>Sandblasting</topic><topic>Slip</topic><topic>Slip velocity</topic><topic>Surface energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Longyang</creatorcontrib><creatorcontrib>Zhu, Jingfang</creatorcontrib><creatorcontrib>Zhi, Shudi</creatorcontrib><creatorcontrib>Liu, Eryong</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Zeng, Zhixiang</creatorcontrib><creatorcontrib>Zhao, Wenjie</creatorcontrib><creatorcontrib>Xue, Qunji</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Longyang</au><au>Zhu, Jingfang</au><au>Zhi, Shudi</au><au>Liu, Eryong</au><au>Wang, Gang</au><au>Zeng, Zhixiang</au><au>Zhao, Wenjie</au><au>Xue, Qunji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of adhesion and friction drag on a rough hydrophobic surface: Sandblasted aluminum</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2018-07</date><risdate>2018</risdate><volume>30</volume><issue>7</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Roughness is a crucial prerequisite for fabricating superhydrophobic surfaces. However, the enormous economic cost of fabricating rough surfaces seriously limits the industrial application of superhydrophobic surfaces. To overcome this drawback, we present herein a simple, low cost, user-friendly, and rapid method to fabricate rough surfaces with micro- and nanostructured features. By modifying the sandblasting pressure, we fabricated aluminum surfaces of varying roughness, which we then decorated with polydimethylsiloxane to reduce the surface energy. The contact angle, slip velocity, slip length, and drag-reduction ratio all increase with increasing sandblasting pressure, and the maximum contact angle of a droplet, the slip velocity, the length, and the drag-reduction ratio are 151.74 ± 1°, 0.1617 m/s, 0.04276 mm, and 19.2%, respectively, for a sandblasting pressure of 0.8 MPa. The adhesive force of the samples decreases with increasing sandblasting pressure to a minimum of 0.096 mN. The process by which trapped air escapes from the sample surface is visualized by using fluent software, and the results show that the low adhesive and low friction properties of the superhydrophobic surface, which are due to air being trapped in the space between protrusions, may effectively prevent water from moving into these spaces.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5039712</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2094-9286</orcidid><orcidid>https://orcid.org/0000-0003-2742-130X</orcidid><orcidid>https://orcid.org/0000-0002-2081-6387</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2018-07, Vol.30 (7)
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_1_5039712
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive
subjects Aluminum
Contact angle
Contact pressure
Drag reduction
Fluid dynamics
Friction drag
Hydrophobic surfaces
Hydrophobicity
Industrial applications
Physics
Polydimethylsiloxane
Roughness
Sandblasting
Slip
Slip velocity
Surface energy
title Study of adhesion and friction drag on a rough hydrophobic surface: Sandblasted aluminum
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A29%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20adhesion%20and%20friction%20drag%20on%20a%20rough%20hydrophobic%20surface:%20Sandblasted%20aluminum&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Li,%20Longyang&rft.date=2018-07&rft.volume=30&rft.issue=7&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.5039712&rft_dat=%3Cproquest_scita%3E2087553925%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-1af8b2c164a0b45a1245b75f8b28b253e9910e16596ef68dd78c1454b67c9a9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2087553925&rft_id=info:pmid/&rfr_iscdi=true