Loading…
Solving the nonlinear Camassa Holm equation using quartic trigonometric B-spline collocation method
In this research, quartic trigonometric B-spline (QTBS) collocation method is used to solve the nonlinear Camassa Holm equation. Forward difference approximation is used to discretize the time derivative while the QTBS basis function is used to discretize the space dimension. This method is applied...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1974 |
creator | Hanoon, Alaa Rahan, Nur Nadiah Mohd Hamid, Nur Nadiah Abd Ismail, Ahmad Izani Md |
description | In this research, quartic trigonometric B-spline (QTBS) collocation method is used to solve the nonlinear Camassa Holm equation. Forward difference approximation is used to discretize the time derivative while the QTBS basis function is used to discretize the space dimension. This method is applied on two test problems using two different schemes, Crank-Nicolson and fully implicit schemes. From the examples, the absolute errors do not exceed 10−4 and the results are comparable for both Crank-Nicolson and fully implicit schemes. |
doi_str_mv | 10.1063/1.5041565 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5041565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088311478</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-62e488a6435c7e748378ccaef599b6dc3a13ed6bdbf7c46d1678a50e5325de0f3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsHv0HAm7A12fzdoxa1QsGDCt5CmmTbLbvJNskKfnu3tuDN08wwvzdveABcYzTDiJM7PGOIYsbZCZhgxnAhOOanYIJQRYuSks9zcJHSFqGyEkJOgHkL7Vfj1zBvHPTBt413OsK57nRKGi5C20G3G3RugodD2pPjFHNjYI7NOvjQubEx8KFI_V4MTWjbYA6CcbcJ9hKc1bpN7upYp-Dj6fF9viiWr88v8_tl0ZeM5IKXjkqpOSXMCCeoJEIao13NqmrFrSEaE2f5yq5qYSi3mAupGXKMlMw6VJMpuDnc7WPYDS5ltQ1D9KOlKpGUBGMq5EjdHqhkmvz7pupj0-n4rTBS-xAVVscQ_4O_QvwDVW9r8gPGC3RO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2088311478</pqid></control><display><type>conference_proceeding</type><title>Solving the nonlinear Camassa Holm equation using quartic trigonometric B-spline collocation method</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Hanoon, Alaa ; Rahan, Nur Nadiah Mohd ; Hamid, Nur Nadiah Abd ; Ismail, Ahmad Izani Md</creator><contributor>Mohamed, Mesliza ; Sharif, Sarifah Radiah ; Rahman, Wan Eny Zarina Wan Abdul ; Akbarally, Ajab Bai ; Jaffar, Maheran Mohd ; Mohamad, Daud ; Maidinsah, Hamidah</contributor><creatorcontrib>Hanoon, Alaa ; Rahan, Nur Nadiah Mohd ; Hamid, Nur Nadiah Abd ; Ismail, Ahmad Izani Md ; Mohamed, Mesliza ; Sharif, Sarifah Radiah ; Rahman, Wan Eny Zarina Wan Abdul ; Akbarally, Ajab Bai ; Jaffar, Maheran Mohd ; Mohamad, Daud ; Maidinsah, Hamidah</creatorcontrib><description>In this research, quartic trigonometric B-spline (QTBS) collocation method is used to solve the nonlinear Camassa Holm equation. Forward difference approximation is used to discretize the time derivative while the QTBS basis function is used to discretize the space dimension. This method is applied on two test problems using two different schemes, Crank-Nicolson and fully implicit schemes. From the examples, the absolute errors do not exceed 10−4 and the results are comparable for both Crank-Nicolson and fully implicit schemes.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5041565</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Basis functions ; Collocation methods</subject><ispartof>AIP conference proceedings, 2018, Vol.1974 (1)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids></links><search><contributor>Mohamed, Mesliza</contributor><contributor>Sharif, Sarifah Radiah</contributor><contributor>Rahman, Wan Eny Zarina Wan Abdul</contributor><contributor>Akbarally, Ajab Bai</contributor><contributor>Jaffar, Maheran Mohd</contributor><contributor>Mohamad, Daud</contributor><contributor>Maidinsah, Hamidah</contributor><creatorcontrib>Hanoon, Alaa</creatorcontrib><creatorcontrib>Rahan, Nur Nadiah Mohd</creatorcontrib><creatorcontrib>Hamid, Nur Nadiah Abd</creatorcontrib><creatorcontrib>Ismail, Ahmad Izani Md</creatorcontrib><title>Solving the nonlinear Camassa Holm equation using quartic trigonometric B-spline collocation method</title><title>AIP conference proceedings</title><description>In this research, quartic trigonometric B-spline (QTBS) collocation method is used to solve the nonlinear Camassa Holm equation. Forward difference approximation is used to discretize the time derivative while the QTBS basis function is used to discretize the space dimension. This method is applied on two test problems using two different schemes, Crank-Nicolson and fully implicit schemes. From the examples, the absolute errors do not exceed 10−4 and the results are comparable for both Crank-Nicolson and fully implicit schemes.</description><subject>Basis functions</subject><subject>Collocation methods</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE9LAzEQxYMoWKsHv0HAm7A12fzdoxa1QsGDCt5CmmTbLbvJNskKfnu3tuDN08wwvzdveABcYzTDiJM7PGOIYsbZCZhgxnAhOOanYIJQRYuSks9zcJHSFqGyEkJOgHkL7Vfj1zBvHPTBt413OsK57nRKGi5C20G3G3RugodD2pPjFHNjYI7NOvjQubEx8KFI_V4MTWjbYA6CcbcJ9hKc1bpN7upYp-Dj6fF9viiWr88v8_tl0ZeM5IKXjkqpOSXMCCeoJEIao13NqmrFrSEaE2f5yq5qYSi3mAupGXKMlMw6VJMpuDnc7WPYDS5ltQ1D9KOlKpGUBGMq5EjdHqhkmvz7pupj0-n4rTBS-xAVVscQ_4O_QvwDVW9r8gPGC3RO</recordid><startdate>20180628</startdate><enddate>20180628</enddate><creator>Hanoon, Alaa</creator><creator>Rahan, Nur Nadiah Mohd</creator><creator>Hamid, Nur Nadiah Abd</creator><creator>Ismail, Ahmad Izani Md</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180628</creationdate><title>Solving the nonlinear Camassa Holm equation using quartic trigonometric B-spline collocation method</title><author>Hanoon, Alaa ; Rahan, Nur Nadiah Mohd ; Hamid, Nur Nadiah Abd ; Ismail, Ahmad Izani Md</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-62e488a6435c7e748378ccaef599b6dc3a13ed6bdbf7c46d1678a50e5325de0f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Basis functions</topic><topic>Collocation methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanoon, Alaa</creatorcontrib><creatorcontrib>Rahan, Nur Nadiah Mohd</creatorcontrib><creatorcontrib>Hamid, Nur Nadiah Abd</creatorcontrib><creatorcontrib>Ismail, Ahmad Izani Md</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanoon, Alaa</au><au>Rahan, Nur Nadiah Mohd</au><au>Hamid, Nur Nadiah Abd</au><au>Ismail, Ahmad Izani Md</au><au>Mohamed, Mesliza</au><au>Sharif, Sarifah Radiah</au><au>Rahman, Wan Eny Zarina Wan Abdul</au><au>Akbarally, Ajab Bai</au><au>Jaffar, Maheran Mohd</au><au>Mohamad, Daud</au><au>Maidinsah, Hamidah</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Solving the nonlinear Camassa Holm equation using quartic trigonometric B-spline collocation method</atitle><btitle>AIP conference proceedings</btitle><date>2018-06-28</date><risdate>2018</risdate><volume>1974</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this research, quartic trigonometric B-spline (QTBS) collocation method is used to solve the nonlinear Camassa Holm equation. Forward difference approximation is used to discretize the time derivative while the QTBS basis function is used to discretize the space dimension. This method is applied on two test problems using two different schemes, Crank-Nicolson and fully implicit schemes. From the examples, the absolute errors do not exceed 10−4 and the results are comparable for both Crank-Nicolson and fully implicit schemes.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5041565</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2018, Vol.1974 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5041565 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Basis functions Collocation methods |
title | Solving the nonlinear Camassa Holm equation using quartic trigonometric B-spline collocation method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A02%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Solving%20the%20nonlinear%20Camassa%20Holm%20equation%20using%20quartic%20trigonometric%20B-spline%20collocation%20method&rft.btitle=AIP%20conference%20proceedings&rft.au=Hanoon,%20Alaa&rft.date=2018-06-28&rft.volume=1974&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5041565&rft_dat=%3Cproquest_scita%3E2088311478%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p253t-62e488a6435c7e748378ccaef599b6dc3a13ed6bdbf7c46d1678a50e5325de0f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2088311478&rft_id=info:pmid/&rfr_iscdi=true |