Loading…

Sextic and decatic anharmonic oscillator potentials including odd power terms: Polynomial solutions

We study the sextic and decatic potentials energy including the odd power terms, and explore possible polynomial solutions for Schrödinger equation. Moreover, we proved that generals sextic and decatic potentials are exactly solvable under certain conditions on the potential’s parameters; these cond...

Full description

Saved in:
Bibliographic Details
Main Authors: Maiz, F., Alqahtani, Moteb M., Ghnaim, I.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1976
creator Maiz, F.
Alqahtani, Moteb M.
Ghnaim, I.
description We study the sextic and decatic potentials energy including the odd power terms, and explore possible polynomial solutions for Schrödinger equation. Moreover, we proved that generals sextic and decatic potentials are exactly solvable under certain conditions on the potential’s parameters; these conditions connect the potential’s parameters to each other and to wave function’s zeros. We compare achieved results with those evaluated by numerical methods. Finally, we derive general expressions of the energy levels and evaluate the first eigenstates for both potentials.
doi_str_mv 10.1063/1.5042401
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5042401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088363095</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-e20130b4456b617bbc5ff9ecb80ad6f47c6bb640dad91c04cb986e86eec46e4c3</originalsourceid><addsrcrecordid>eNotkNtKxDAQhoMoWFcvfIOAd0LXSZOmrXeyeIIFBRW8KzlVu7RJTVJ0394suzAwP8w3px-hSwJLApzekGUJrGBAjlBGypLkFSf8GGUADcsLRj9P0VkIG4Ciqao6Q-rN_MVeYWE11kaJvf4WfnQ2SRdUPwwiOo8nF42NvRgC7q0aZt3bL-y0ToVf43E0fgy3-NUNW-vGhOHghjn2zoZzdNKlNnNxyAv08XD_vnrK1y-Pz6u7dT4VJY25KYBQkIyVXHJSSanKrmuMkjUIzTtWKS4lZ6CFbogCpmRTc5PCKMYNU3SBrvZzJ-9-ZhNiu3Gzt2llW0BdU06hKRN1vafSa1HsDmwn34_Cb1sC7c7ElrQHE-k_EbBmNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2088363095</pqid></control><display><type>conference_proceeding</type><title>Sextic and decatic anharmonic oscillator potentials including odd power terms: Polynomial solutions</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Maiz, F. ; Alqahtani, Moteb M. ; Ghnaim, I.</creator><contributor>Mahgoub, Mahmoud ; Can, Nurdogan ; Hakami, Jabir ; Souadi, Galib Omar ; Al-Kamli, Ali ; Mujahid, Zaka-ul-Islam ; Mahdy, Abdelrahman</contributor><creatorcontrib>Maiz, F. ; Alqahtani, Moteb M. ; Ghnaim, I. ; Mahgoub, Mahmoud ; Can, Nurdogan ; Hakami, Jabir ; Souadi, Galib Omar ; Al-Kamli, Ali ; Mujahid, Zaka-ul-Islam ; Mahdy, Abdelrahman</creatorcontrib><description>We study the sextic and decatic potentials energy including the odd power terms, and explore possible polynomial solutions for Schrödinger equation. Moreover, we proved that generals sextic and decatic potentials are exactly solvable under certain conditions on the potential’s parameters; these conditions connect the potential’s parameters to each other and to wave function’s zeros. We compare achieved results with those evaluated by numerical methods. Finally, we derive general expressions of the energy levels and evaluate the first eigenstates for both potentials.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5042401</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anharmonicity ; Eigenvectors ; Energy levels ; Numerical methods ; Parameters ; Polynomials ; Schrodinger equation</subject><ispartof>AIP conference proceedings, 2018, Vol.1976 (1)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Mahgoub, Mahmoud</contributor><contributor>Can, Nurdogan</contributor><contributor>Hakami, Jabir</contributor><contributor>Souadi, Galib Omar</contributor><contributor>Al-Kamli, Ali</contributor><contributor>Mujahid, Zaka-ul-Islam</contributor><contributor>Mahdy, Abdelrahman</contributor><creatorcontrib>Maiz, F.</creatorcontrib><creatorcontrib>Alqahtani, Moteb M.</creatorcontrib><creatorcontrib>Ghnaim, I.</creatorcontrib><title>Sextic and decatic anharmonic oscillator potentials including odd power terms: Polynomial solutions</title><title>AIP conference proceedings</title><description>We study the sextic and decatic potentials energy including the odd power terms, and explore possible polynomial solutions for Schrödinger equation. Moreover, we proved that generals sextic and decatic potentials are exactly solvable under certain conditions on the potential’s parameters; these conditions connect the potential’s parameters to each other and to wave function’s zeros. We compare achieved results with those evaluated by numerical methods. Finally, we derive general expressions of the energy levels and evaluate the first eigenstates for both potentials.</description><subject>Anharmonicity</subject><subject>Eigenvectors</subject><subject>Energy levels</subject><subject>Numerical methods</subject><subject>Parameters</subject><subject>Polynomials</subject><subject>Schrodinger equation</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkNtKxDAQhoMoWFcvfIOAd0LXSZOmrXeyeIIFBRW8KzlVu7RJTVJ0394suzAwP8w3px-hSwJLApzekGUJrGBAjlBGypLkFSf8GGUADcsLRj9P0VkIG4Ciqao6Q-rN_MVeYWE11kaJvf4WfnQ2SRdUPwwiOo8nF42NvRgC7q0aZt3bL-y0ToVf43E0fgy3-NUNW-vGhOHghjn2zoZzdNKlNnNxyAv08XD_vnrK1y-Pz6u7dT4VJY25KYBQkIyVXHJSSanKrmuMkjUIzTtWKS4lZ6CFbogCpmRTc5PCKMYNU3SBrvZzJ-9-ZhNiu3Gzt2llW0BdU06hKRN1vafSa1HsDmwn34_Cb1sC7c7ElrQHE-k_EbBmNA</recordid><startdate>20180615</startdate><enddate>20180615</enddate><creator>Maiz, F.</creator><creator>Alqahtani, Moteb M.</creator><creator>Ghnaim, I.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180615</creationdate><title>Sextic and decatic anharmonic oscillator potentials including odd power terms: Polynomial solutions</title><author>Maiz, F. ; Alqahtani, Moteb M. ; Ghnaim, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-e20130b4456b617bbc5ff9ecb80ad6f47c6bb640dad91c04cb986e86eec46e4c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anharmonicity</topic><topic>Eigenvectors</topic><topic>Energy levels</topic><topic>Numerical methods</topic><topic>Parameters</topic><topic>Polynomials</topic><topic>Schrodinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maiz, F.</creatorcontrib><creatorcontrib>Alqahtani, Moteb M.</creatorcontrib><creatorcontrib>Ghnaim, I.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maiz, F.</au><au>Alqahtani, Moteb M.</au><au>Ghnaim, I.</au><au>Mahgoub, Mahmoud</au><au>Can, Nurdogan</au><au>Hakami, Jabir</au><au>Souadi, Galib Omar</au><au>Al-Kamli, Ali</au><au>Mujahid, Zaka-ul-Islam</au><au>Mahdy, Abdelrahman</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sextic and decatic anharmonic oscillator potentials including odd power terms: Polynomial solutions</atitle><btitle>AIP conference proceedings</btitle><date>2018-06-15</date><risdate>2018</risdate><volume>1976</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>We study the sextic and decatic potentials energy including the odd power terms, and explore possible polynomial solutions for Schrödinger equation. Moreover, we proved that generals sextic and decatic potentials are exactly solvable under certain conditions on the potential’s parameters; these conditions connect the potential’s parameters to each other and to wave function’s zeros. We compare achieved results with those evaluated by numerical methods. Finally, we derive general expressions of the energy levels and evaluate the first eigenstates for both potentials.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5042401</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2018, Vol.1976 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_5042401
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Anharmonicity
Eigenvectors
Energy levels
Numerical methods
Parameters
Polynomials
Schrodinger equation
title Sextic and decatic anharmonic oscillator potentials including odd power terms: Polynomial solutions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A20%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sextic%20and%20decatic%20anharmonic%20oscillator%20potentials%20including%20odd%20power%20terms:%20Polynomial%20solutions&rft.btitle=AIP%20conference%20proceedings&rft.au=Maiz,%20F.&rft.date=2018-06-15&rft.volume=1976&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5042401&rft_dat=%3Cproquest_scita%3E2088363095%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p253t-e20130b4456b617bbc5ff9ecb80ad6f47c6bb640dad91c04cb986e86eec46e4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2088363095&rft_id=info:pmid/&rfr_iscdi=true