Loading…
Sextic and decatic anharmonic oscillator potentials including odd power terms: Polynomial solutions
We study the sextic and decatic potentials energy including the odd power terms, and explore possible polynomial solutions for Schrödinger equation. Moreover, we proved that generals sextic and decatic potentials are exactly solvable under certain conditions on the potential’s parameters; these cond...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1976 |
creator | Maiz, F. Alqahtani, Moteb M. Ghnaim, I. |
description | We study the sextic and decatic potentials energy including the odd power terms, and explore possible polynomial solutions for Schrödinger equation. Moreover, we proved that generals sextic and decatic potentials are exactly solvable under certain conditions on the potential’s parameters; these conditions connect the potential’s parameters to each other and to wave function’s zeros. We compare achieved results with those evaluated by numerical methods. Finally, we derive general expressions of the energy levels and evaluate the first eigenstates for both potentials. |
doi_str_mv | 10.1063/1.5042401 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5042401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088363095</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-e20130b4456b617bbc5ff9ecb80ad6f47c6bb640dad91c04cb986e86eec46e4c3</originalsourceid><addsrcrecordid>eNotkNtKxDAQhoMoWFcvfIOAd0LXSZOmrXeyeIIFBRW8KzlVu7RJTVJ0394suzAwP8w3px-hSwJLApzekGUJrGBAjlBGypLkFSf8GGUADcsLRj9P0VkIG4Ciqao6Q-rN_MVeYWE11kaJvf4WfnQ2SRdUPwwiOo8nF42NvRgC7q0aZt3bL-y0ToVf43E0fgy3-NUNW-vGhOHghjn2zoZzdNKlNnNxyAv08XD_vnrK1y-Pz6u7dT4VJY25KYBQkIyVXHJSSanKrmuMkjUIzTtWKS4lZ6CFbogCpmRTc5PCKMYNU3SBrvZzJ-9-ZhNiu3Gzt2llW0BdU06hKRN1vafSa1HsDmwn34_Cb1sC7c7ElrQHE-k_EbBmNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2088363095</pqid></control><display><type>conference_proceeding</type><title>Sextic and decatic anharmonic oscillator potentials including odd power terms: Polynomial solutions</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Maiz, F. ; Alqahtani, Moteb M. ; Ghnaim, I.</creator><contributor>Mahgoub, Mahmoud ; Can, Nurdogan ; Hakami, Jabir ; Souadi, Galib Omar ; Al-Kamli, Ali ; Mujahid, Zaka-ul-Islam ; Mahdy, Abdelrahman</contributor><creatorcontrib>Maiz, F. ; Alqahtani, Moteb M. ; Ghnaim, I. ; Mahgoub, Mahmoud ; Can, Nurdogan ; Hakami, Jabir ; Souadi, Galib Omar ; Al-Kamli, Ali ; Mujahid, Zaka-ul-Islam ; Mahdy, Abdelrahman</creatorcontrib><description>We study the sextic and decatic potentials energy including the odd power terms, and explore possible polynomial solutions for Schrödinger equation. Moreover, we proved that generals sextic and decatic potentials are exactly solvable under certain conditions on the potential’s parameters; these conditions connect the potential’s parameters to each other and to wave function’s zeros. We compare achieved results with those evaluated by numerical methods. Finally, we derive general expressions of the energy levels and evaluate the first eigenstates for both potentials.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5042401</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anharmonicity ; Eigenvectors ; Energy levels ; Numerical methods ; Parameters ; Polynomials ; Schrodinger equation</subject><ispartof>AIP conference proceedings, 2018, Vol.1976 (1)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Mahgoub, Mahmoud</contributor><contributor>Can, Nurdogan</contributor><contributor>Hakami, Jabir</contributor><contributor>Souadi, Galib Omar</contributor><contributor>Al-Kamli, Ali</contributor><contributor>Mujahid, Zaka-ul-Islam</contributor><contributor>Mahdy, Abdelrahman</contributor><creatorcontrib>Maiz, F.</creatorcontrib><creatorcontrib>Alqahtani, Moteb M.</creatorcontrib><creatorcontrib>Ghnaim, I.</creatorcontrib><title>Sextic and decatic anharmonic oscillator potentials including odd power terms: Polynomial solutions</title><title>AIP conference proceedings</title><description>We study the sextic and decatic potentials energy including the odd power terms, and explore possible polynomial solutions for Schrödinger equation. Moreover, we proved that generals sextic and decatic potentials are exactly solvable under certain conditions on the potential’s parameters; these conditions connect the potential’s parameters to each other and to wave function’s zeros. We compare achieved results with those evaluated by numerical methods. Finally, we derive general expressions of the energy levels and evaluate the first eigenstates for both potentials.</description><subject>Anharmonicity</subject><subject>Eigenvectors</subject><subject>Energy levels</subject><subject>Numerical methods</subject><subject>Parameters</subject><subject>Polynomials</subject><subject>Schrodinger equation</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkNtKxDAQhoMoWFcvfIOAd0LXSZOmrXeyeIIFBRW8KzlVu7RJTVJ0394suzAwP8w3px-hSwJLApzekGUJrGBAjlBGypLkFSf8GGUADcsLRj9P0VkIG4Ciqao6Q-rN_MVeYWE11kaJvf4WfnQ2SRdUPwwiOo8nF42NvRgC7q0aZt3bL-y0ToVf43E0fgy3-NUNW-vGhOHghjn2zoZzdNKlNnNxyAv08XD_vnrK1y-Pz6u7dT4VJY25KYBQkIyVXHJSSanKrmuMkjUIzTtWKS4lZ6CFbogCpmRTc5PCKMYNU3SBrvZzJ-9-ZhNiu3Gzt2llW0BdU06hKRN1vafSa1HsDmwn34_Cb1sC7c7ElrQHE-k_EbBmNA</recordid><startdate>20180615</startdate><enddate>20180615</enddate><creator>Maiz, F.</creator><creator>Alqahtani, Moteb M.</creator><creator>Ghnaim, I.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180615</creationdate><title>Sextic and decatic anharmonic oscillator potentials including odd power terms: Polynomial solutions</title><author>Maiz, F. ; Alqahtani, Moteb M. ; Ghnaim, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-e20130b4456b617bbc5ff9ecb80ad6f47c6bb640dad91c04cb986e86eec46e4c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anharmonicity</topic><topic>Eigenvectors</topic><topic>Energy levels</topic><topic>Numerical methods</topic><topic>Parameters</topic><topic>Polynomials</topic><topic>Schrodinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maiz, F.</creatorcontrib><creatorcontrib>Alqahtani, Moteb M.</creatorcontrib><creatorcontrib>Ghnaim, I.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maiz, F.</au><au>Alqahtani, Moteb M.</au><au>Ghnaim, I.</au><au>Mahgoub, Mahmoud</au><au>Can, Nurdogan</au><au>Hakami, Jabir</au><au>Souadi, Galib Omar</au><au>Al-Kamli, Ali</au><au>Mujahid, Zaka-ul-Islam</au><au>Mahdy, Abdelrahman</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sextic and decatic anharmonic oscillator potentials including odd power terms: Polynomial solutions</atitle><btitle>AIP conference proceedings</btitle><date>2018-06-15</date><risdate>2018</risdate><volume>1976</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>We study the sextic and decatic potentials energy including the odd power terms, and explore possible polynomial solutions for Schrödinger equation. Moreover, we proved that generals sextic and decatic potentials are exactly solvable under certain conditions on the potential’s parameters; these conditions connect the potential’s parameters to each other and to wave function’s zeros. We compare achieved results with those evaluated by numerical methods. Finally, we derive general expressions of the energy levels and evaluate the first eigenstates for both potentials.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5042401</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2018, Vol.1976 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5042401 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Anharmonicity Eigenvectors Energy levels Numerical methods Parameters Polynomials Schrodinger equation |
title | Sextic and decatic anharmonic oscillator potentials including odd power terms: Polynomial solutions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A20%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sextic%20and%20decatic%20anharmonic%20oscillator%20potentials%20including%20odd%20power%20terms:%20Polynomial%20solutions&rft.btitle=AIP%20conference%20proceedings&rft.au=Maiz,%20F.&rft.date=2018-06-15&rft.volume=1976&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5042401&rft_dat=%3Cproquest_scita%3E2088363095%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p253t-e20130b4456b617bbc5ff9ecb80ad6f47c6bb640dad91c04cb986e86eec46e4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2088363095&rft_id=info:pmid/&rfr_iscdi=true |