Loading…
Notes on the preliminary results of a linear two-class classifier in the PERMON toolbox
This paper deals with the preliminary results of a linear two-class Support Vector Machines (SVM) implemented in PERMON toolbox. We present the first insights into training PermonSVM classifier using quadratic programming (QP) algorithms from the PemonQP, i.e. Dostál’s SMALBE, which is based on the...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1978 |
creator | Pecha, Marek Hapla, Václav Horák, David Čermák, Martin |
description | This paper deals with the preliminary results of a linear two-class Support Vector Machines (SVM) implemented in PERMON toolbox. We present the first insights into training PermonSVM classifier using quadratic programming (QP) algorithms from the PemonQP, i.e. Dostál’s SMALBE, which is based on the augmented Lagrangian approach, and MPGP algorithms for box constrained QP. In presented benchmark on the URL dataset, we analyze the abilities of the QP solver with the respect to regularized parameter C and QP solver accuracy eps. In fact, we consider eps as the second parameter of the linear SVM and therefore we got better information about the tested algorithm behaviour. |
doi_str_mv | 10.1063/1.5043965 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5043965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087642003</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-26443f7cb485e72e12e8572e4d7ab079d250d7cc1eb48a7b76b0813b6e9b33993</originalsourceid><addsrcrecordid>eNotkE9LAzEQxYMoWKsHv0HAm7B18meTzVFKrUJtRRS9hWSbxZTtZk1S1G_vanuZd5jfvMc8hC4JTAgIdkMmJXCmRHmERqQsSSEFEcdoBKB4QTl7P0VnKW0AqJKyGqG3Zcgu4dDh_OFwH13rt74z8QdHl3ZtHlYNNrj1nTMR569Q1K1JCf9P33gXsd_fPs2eH1dLnENobfg-RyeNaZO7OOgYvd7NXqb3xWI1f5jeLoqekioXVHDOGllbXpVOUkeoq8pB-VoaC1KtaQlrWdfEDYSRVgoLFWFWOGUZU4qN0dXet4_hc-dS1puwi90QqSlUUnAKwAbqek-l2meTfeh0H_12eFMT0H_FaaIPxbFfyqJe3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2087642003</pqid></control><display><type>conference_proceeding</type><title>Notes on the preliminary results of a linear two-class classifier in the PERMON toolbox</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Pecha, Marek ; Hapla, Václav ; Horák, David ; Čermák, Martin</creator><contributor>Simos, Theodore ; Tsitouras, Charalambos</contributor><creatorcontrib>Pecha, Marek ; Hapla, Václav ; Horák, David ; Čermák, Martin ; Simos, Theodore ; Tsitouras, Charalambos</creatorcontrib><description>This paper deals with the preliminary results of a linear two-class Support Vector Machines (SVM) implemented in PERMON toolbox. We present the first insights into training PermonSVM classifier using quadratic programming (QP) algorithms from the PemonQP, i.e. Dostál’s SMALBE, which is based on the augmented Lagrangian approach, and MPGP algorithms for box constrained QP. In presented benchmark on the URL dataset, we analyze the abilities of the QP solver with the respect to regularized parameter C and QP solver accuracy eps. In fact, we consider eps as the second parameter of the linear SVM and therefore we got better information about the tested algorithm behaviour.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5043965</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Classifiers ; Parameters ; Quadratic programming ; Support vector machines</subject><ispartof>AIP conference proceedings, 2018, Vol.1978 (1)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Simos, Theodore</contributor><contributor>Tsitouras, Charalambos</contributor><creatorcontrib>Pecha, Marek</creatorcontrib><creatorcontrib>Hapla, Václav</creatorcontrib><creatorcontrib>Horák, David</creatorcontrib><creatorcontrib>Čermák, Martin</creatorcontrib><title>Notes on the preliminary results of a linear two-class classifier in the PERMON toolbox</title><title>AIP conference proceedings</title><description>This paper deals with the preliminary results of a linear two-class Support Vector Machines (SVM) implemented in PERMON toolbox. We present the first insights into training PermonSVM classifier using quadratic programming (QP) algorithms from the PemonQP, i.e. Dostál’s SMALBE, which is based on the augmented Lagrangian approach, and MPGP algorithms for box constrained QP. In presented benchmark on the URL dataset, we analyze the abilities of the QP solver with the respect to regularized parameter C and QP solver accuracy eps. In fact, we consider eps as the second parameter of the linear SVM and therefore we got better information about the tested algorithm behaviour.</description><subject>Algorithms</subject><subject>Classifiers</subject><subject>Parameters</subject><subject>Quadratic programming</subject><subject>Support vector machines</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE9LAzEQxYMoWKsHv0HAm7B18meTzVFKrUJtRRS9hWSbxZTtZk1S1G_vanuZd5jfvMc8hC4JTAgIdkMmJXCmRHmERqQsSSEFEcdoBKB4QTl7P0VnKW0AqJKyGqG3Zcgu4dDh_OFwH13rt74z8QdHl3ZtHlYNNrj1nTMR569Q1K1JCf9P33gXsd_fPs2eH1dLnENobfg-RyeNaZO7OOgYvd7NXqb3xWI1f5jeLoqekioXVHDOGllbXpVOUkeoq8pB-VoaC1KtaQlrWdfEDYSRVgoLFWFWOGUZU4qN0dXet4_hc-dS1puwi90QqSlUUnAKwAbqek-l2meTfeh0H_12eFMT0H_FaaIPxbFfyqJe3Q</recordid><startdate>20180710</startdate><enddate>20180710</enddate><creator>Pecha, Marek</creator><creator>Hapla, Václav</creator><creator>Horák, David</creator><creator>Čermák, Martin</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180710</creationdate><title>Notes on the preliminary results of a linear two-class classifier in the PERMON toolbox</title><author>Pecha, Marek ; Hapla, Václav ; Horák, David ; Čermák, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-26443f7cb485e72e12e8572e4d7ab079d250d7cc1eb48a7b76b0813b6e9b33993</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Classifiers</topic><topic>Parameters</topic><topic>Quadratic programming</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pecha, Marek</creatorcontrib><creatorcontrib>Hapla, Václav</creatorcontrib><creatorcontrib>Horák, David</creatorcontrib><creatorcontrib>Čermák, Martin</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pecha, Marek</au><au>Hapla, Václav</au><au>Horák, David</au><au>Čermák, Martin</au><au>Simos, Theodore</au><au>Tsitouras, Charalambos</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Notes on the preliminary results of a linear two-class classifier in the PERMON toolbox</atitle><btitle>AIP conference proceedings</btitle><date>2018-07-10</date><risdate>2018</risdate><volume>1978</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This paper deals with the preliminary results of a linear two-class Support Vector Machines (SVM) implemented in PERMON toolbox. We present the first insights into training PermonSVM classifier using quadratic programming (QP) algorithms from the PemonQP, i.e. Dostál’s SMALBE, which is based on the augmented Lagrangian approach, and MPGP algorithms for box constrained QP. In presented benchmark on the URL dataset, we analyze the abilities of the QP solver with the respect to regularized parameter C and QP solver accuracy eps. In fact, we consider eps as the second parameter of the linear SVM and therefore we got better information about the tested algorithm behaviour.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5043965</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2018, Vol.1978 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5043965 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Algorithms Classifiers Parameters Quadratic programming Support vector machines |
title | Notes on the preliminary results of a linear two-class classifier in the PERMON toolbox |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A29%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Notes%20on%20the%20preliminary%20results%20of%20a%20linear%20two-class%20classifier%20in%20the%20PERMON%20toolbox&rft.btitle=AIP%20conference%20proceedings&rft.au=Pecha,%20Marek&rft.date=2018-07-10&rft.volume=1978&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5043965&rft_dat=%3Cproquest_scita%3E2087642003%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p218t-26443f7cb485e72e12e8572e4d7ab079d250d7cc1eb48a7b76b0813b6e9b33993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2087642003&rft_id=info:pmid/&rfr_iscdi=true |