Loading…

Notes on the preliminary results of a linear two-class classifier in the PERMON toolbox

This paper deals with the preliminary results of a linear two-class Support Vector Machines (SVM) implemented in PERMON toolbox. We present the first insights into training PermonSVM classifier using quadratic programming (QP) algorithms from the PemonQP, i.e. Dostál’s SMALBE, which is based on the...

Full description

Saved in:
Bibliographic Details
Main Authors: Pecha, Marek, Hapla, Václav, Horák, David, Čermák, Martin
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1978
creator Pecha, Marek
Hapla, Václav
Horák, David
Čermák, Martin
description This paper deals with the preliminary results of a linear two-class Support Vector Machines (SVM) implemented in PERMON toolbox. We present the first insights into training PermonSVM classifier using quadratic programming (QP) algorithms from the PemonQP, i.e. Dostál’s SMALBE, which is based on the augmented Lagrangian approach, and MPGP algorithms for box constrained QP. In presented benchmark on the URL dataset, we analyze the abilities of the QP solver with the respect to regularized parameter C and QP solver accuracy eps. In fact, we consider eps as the second parameter of the linear SVM and therefore we got better information about the tested algorithm behaviour.
doi_str_mv 10.1063/1.5043965
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5043965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087642003</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-26443f7cb485e72e12e8572e4d7ab079d250d7cc1eb48a7b76b0813b6e9b33993</originalsourceid><addsrcrecordid>eNotkE9LAzEQxYMoWKsHv0HAm7B18meTzVFKrUJtRRS9hWSbxZTtZk1S1G_vanuZd5jfvMc8hC4JTAgIdkMmJXCmRHmERqQsSSEFEcdoBKB4QTl7P0VnKW0AqJKyGqG3Zcgu4dDh_OFwH13rt74z8QdHl3ZtHlYNNrj1nTMR569Q1K1JCf9P33gXsd_fPs2eH1dLnENobfg-RyeNaZO7OOgYvd7NXqb3xWI1f5jeLoqekioXVHDOGllbXpVOUkeoq8pB-VoaC1KtaQlrWdfEDYSRVgoLFWFWOGUZU4qN0dXet4_hc-dS1puwi90QqSlUUnAKwAbqek-l2meTfeh0H_12eFMT0H_FaaIPxbFfyqJe3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2087642003</pqid></control><display><type>conference_proceeding</type><title>Notes on the preliminary results of a linear two-class classifier in the PERMON toolbox</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Pecha, Marek ; Hapla, Václav ; Horák, David ; Čermák, Martin</creator><contributor>Simos, Theodore ; Tsitouras, Charalambos</contributor><creatorcontrib>Pecha, Marek ; Hapla, Václav ; Horák, David ; Čermák, Martin ; Simos, Theodore ; Tsitouras, Charalambos</creatorcontrib><description>This paper deals with the preliminary results of a linear two-class Support Vector Machines (SVM) implemented in PERMON toolbox. We present the first insights into training PermonSVM classifier using quadratic programming (QP) algorithms from the PemonQP, i.e. Dostál’s SMALBE, which is based on the augmented Lagrangian approach, and MPGP algorithms for box constrained QP. In presented benchmark on the URL dataset, we analyze the abilities of the QP solver with the respect to regularized parameter C and QP solver accuracy eps. In fact, we consider eps as the second parameter of the linear SVM and therefore we got better information about the tested algorithm behaviour.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5043965</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Classifiers ; Parameters ; Quadratic programming ; Support vector machines</subject><ispartof>AIP conference proceedings, 2018, Vol.1978 (1)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Simos, Theodore</contributor><contributor>Tsitouras, Charalambos</contributor><creatorcontrib>Pecha, Marek</creatorcontrib><creatorcontrib>Hapla, Václav</creatorcontrib><creatorcontrib>Horák, David</creatorcontrib><creatorcontrib>Čermák, Martin</creatorcontrib><title>Notes on the preliminary results of a linear two-class classifier in the PERMON toolbox</title><title>AIP conference proceedings</title><description>This paper deals with the preliminary results of a linear two-class Support Vector Machines (SVM) implemented in PERMON toolbox. We present the first insights into training PermonSVM classifier using quadratic programming (QP) algorithms from the PemonQP, i.e. Dostál’s SMALBE, which is based on the augmented Lagrangian approach, and MPGP algorithms for box constrained QP. In presented benchmark on the URL dataset, we analyze the abilities of the QP solver with the respect to regularized parameter C and QP solver accuracy eps. In fact, we consider eps as the second parameter of the linear SVM and therefore we got better information about the tested algorithm behaviour.</description><subject>Algorithms</subject><subject>Classifiers</subject><subject>Parameters</subject><subject>Quadratic programming</subject><subject>Support vector machines</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE9LAzEQxYMoWKsHv0HAm7B18meTzVFKrUJtRRS9hWSbxZTtZk1S1G_vanuZd5jfvMc8hC4JTAgIdkMmJXCmRHmERqQsSSEFEcdoBKB4QTl7P0VnKW0AqJKyGqG3Zcgu4dDh_OFwH13rt74z8QdHl3ZtHlYNNrj1nTMR569Q1K1JCf9P33gXsd_fPs2eH1dLnENobfg-RyeNaZO7OOgYvd7NXqb3xWI1f5jeLoqekioXVHDOGllbXpVOUkeoq8pB-VoaC1KtaQlrWdfEDYSRVgoLFWFWOGUZU4qN0dXet4_hc-dS1puwi90QqSlUUnAKwAbqek-l2meTfeh0H_12eFMT0H_FaaIPxbFfyqJe3Q</recordid><startdate>20180710</startdate><enddate>20180710</enddate><creator>Pecha, Marek</creator><creator>Hapla, Václav</creator><creator>Horák, David</creator><creator>Čermák, Martin</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180710</creationdate><title>Notes on the preliminary results of a linear two-class classifier in the PERMON toolbox</title><author>Pecha, Marek ; Hapla, Václav ; Horák, David ; Čermák, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-26443f7cb485e72e12e8572e4d7ab079d250d7cc1eb48a7b76b0813b6e9b33993</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Classifiers</topic><topic>Parameters</topic><topic>Quadratic programming</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pecha, Marek</creatorcontrib><creatorcontrib>Hapla, Václav</creatorcontrib><creatorcontrib>Horák, David</creatorcontrib><creatorcontrib>Čermák, Martin</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pecha, Marek</au><au>Hapla, Václav</au><au>Horák, David</au><au>Čermák, Martin</au><au>Simos, Theodore</au><au>Tsitouras, Charalambos</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Notes on the preliminary results of a linear two-class classifier in the PERMON toolbox</atitle><btitle>AIP conference proceedings</btitle><date>2018-07-10</date><risdate>2018</risdate><volume>1978</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This paper deals with the preliminary results of a linear two-class Support Vector Machines (SVM) implemented in PERMON toolbox. We present the first insights into training PermonSVM classifier using quadratic programming (QP) algorithms from the PemonQP, i.e. Dostál’s SMALBE, which is based on the augmented Lagrangian approach, and MPGP algorithms for box constrained QP. In presented benchmark on the URL dataset, we analyze the abilities of the QP solver with the respect to regularized parameter C and QP solver accuracy eps. In fact, we consider eps as the second parameter of the linear SVM and therefore we got better information about the tested algorithm behaviour.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5043965</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2018, Vol.1978 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_5043965
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Algorithms
Classifiers
Parameters
Quadratic programming
Support vector machines
title Notes on the preliminary results of a linear two-class classifier in the PERMON toolbox
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A29%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Notes%20on%20the%20preliminary%20results%20of%20a%20linear%20two-class%20classifier%20in%20the%20PERMON%20toolbox&rft.btitle=AIP%20conference%20proceedings&rft.au=Pecha,%20Marek&rft.date=2018-07-10&rft.volume=1978&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5043965&rft_dat=%3Cproquest_scita%3E2087642003%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p218t-26443f7cb485e72e12e8572e4d7ab079d250d7cc1eb48a7b76b0813b6e9b33993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2087642003&rft_id=info:pmid/&rfr_iscdi=true