Loading…

Influence of a square pulse voltage on argon-ethyl lactate discharges and their plasma-deposited coatings using time-resolved spectroscopy and surface characterization

By comparing time-resolved optical emission spectroscopy measurements and the predictions of a collisional-radiative model, the evolutions of electron temperature (Te) and number density of argon metastable atoms [n(Arm)] were determined in argon-ethyl lactate dielectric barrier discharges. The infl...

Full description

Saved in:
Bibliographic Details
Published in:Physics of plasmas 2018-10, Vol.25 (10)
Main Authors: Laurent, Morgane, Desjardins, Edouard, Meichelboeck, Maximilian, Belinger, Antoine, Naudé, Nicolas, Stafford, Luc, Gherardi, Nicolas, Laroche, Gaétan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:By comparing time-resolved optical emission spectroscopy measurements and the predictions of a collisional-radiative model, the evolutions of electron temperature (Te) and number density of argon metastable atoms [n(Arm)] were determined in argon-ethyl lactate dielectric barrier discharges. The influence of a square pulse power supply on Te, n(Arm), and discharge current is evaluated and correlated with the chemistry and the topography of plasma-deposited coatings. Pulsed discharges were found to have shorter (100 ns) but stronger (1 A) current peaks and higher electron temperatures (0.7 eV) than when using a 35 kHz sinusoidal power supply (2 μs, 30 mA, 0.3 eV). The n(Arm) values seemed to be rather stable around 1011 cm−3 with a sinus power supply. In contrast, with a pulse power supply with long time off (i.e., time without discharge) between each pulse, a progressive increase in n(Arm) from 1011 cm−3 up to 1012–1013 cm−3 was observed. When the time off was reduced, this increase was measured in sync with the current peak. The chemical composition of the coatings was not significantly affected by using a pulse signal, whereas the topography was strongly influenced and led to powder formations when reducing the time off.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.5046181