Loading…

Transport phenomena and thermodynamics: Multicomponent mixtures

In Swaney and Bird [Chem. Eng. Educ. 51, 83 (2017)], the authors discussed some heretofore unappreciated relations between the equations of transport phenomena and those of thermodynamics for the case of pure fluids. Here we extend the discussion to multicomponent mixtures and open systems with the...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2019-02, Vol.31 (2), p.21202
Main Authors: Swaney, Ross E., Bird, R. Byron
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-a177c8053f8ba4592469c92216a15661c75a42d783ebc130668821ae921056f43
cites cdi_FETCH-LOGICAL-c292t-a177c8053f8ba4592469c92216a15661c75a42d783ebc130668821ae921056f43
container_end_page
container_issue 2
container_start_page 21202
container_title Physics of fluids (1994)
container_volume 31
creator Swaney, Ross E.
Bird, R. Byron
description In Swaney and Bird [Chem. Eng. Educ. 51, 83 (2017)], the authors discussed some heretofore unappreciated relations between the equations of transport phenomena and those of thermodynamics for the case of pure fluids. Here we extend the discussion to multicomponent mixtures and open systems with the associated convective terms, and show how several key equations in thermodynamics may be derived by using the equations of energy, mechanical energy, and entropy from transport phenomena. These derivations point out some features of the thermodynamic equations that are not often recognized, and elucidate the meaning of phrases such as “quasi-steady-state processes.” We show how one can obtain our version of the first law dU=dQ−p¯¯dV+∫Vt−τ:∇v+∑α=1Njα⋅gαdVdt−∫A(t)(n⋅ρĤṽ)dAdt,our version of the second law T¯¯dS=dQ+∫Vt−τ:∇v+∑α=1Njα⋅gαdVdt−∑α=1Nμ¯¯αdnα−∫A(t)(n⋅ρĤṽ)dAdt, and Gibbs’ fundamental relation dU=T¯¯dS−p¯¯dV+∑αμ¯¯αdnα. The double overbars indicate suitably averaged values and extend the familiar results to systems that are not uniform and not in equilibrium macroscopically. At various places in the development, we make use of the equations of conservation of mass, momentum, and energy, as well as the equation of change for entropy, from transport phenomena.
doi_str_mv 10.1063/1.5048320
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5048320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2160951785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-a177c8053f8ba4592469c92216a15661c75a42d783ebc130668821ae921056f43</originalsourceid><addsrcrecordid>eNp90M1KAzEUBeAgCtbqwjcYcKUwNTeZ3EnciBT_oOKmrkOaZuiUTjImGbBv75S6dnXv4uMcOIRcA50BRX4PM0EryRk9IROgUpU1Ip4e_pqWiBzOyUVKW0opVwwn5HEZjU99iLnoN86HznlTGL8u8sbFLqz33nStTQ_Fx7DLrQ1dH7zzuejanzxEly7JWWN2yV393Sn5enlezt_Kxefr-_xpUVqmWC4N1LWVVPBGrkwlFKtQWcUYoAGBCLYWpmLrWnK3ssApopQMjFMMqMCm4lNyc8ztY_geXMp6G4box0o9hlAloJZiVLdHZWNIKbpG97HtTNxroPqwjwb9t89o74422Tab3Ab_D_4FYkpjVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2160951785</pqid></control><display><type>article</type><title>Transport phenomena and thermodynamics: Multicomponent mixtures</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Swaney, Ross E. ; Bird, R. Byron</creator><creatorcontrib>Swaney, Ross E. ; Bird, R. Byron</creatorcontrib><description>In Swaney and Bird [Chem. Eng. Educ. 51, 83 (2017)], the authors discussed some heretofore unappreciated relations between the equations of transport phenomena and those of thermodynamics for the case of pure fluids. Here we extend the discussion to multicomponent mixtures and open systems with the associated convective terms, and show how several key equations in thermodynamics may be derived by using the equations of energy, mechanical energy, and entropy from transport phenomena. These derivations point out some features of the thermodynamic equations that are not often recognized, and elucidate the meaning of phrases such as “quasi-steady-state processes.” We show how one can obtain our version of the first law dU=dQ−p¯¯dV+∫Vt−τ:∇v+∑α=1Njα⋅gαdVdt−∫A(t)(n⋅ρĤṽ)dAdt,our version of the second law T¯¯dS=dQ+∫Vt−τ:∇v+∑α=1Njα⋅gαdVdt−∑α=1Nμ¯¯αdnα−∫A(t)(n⋅ρĤṽ)dAdt, and Gibbs’ fundamental relation dU=T¯¯dS−p¯¯dV+∑αμ¯¯αdnα. The double overbars indicate suitably averaged values and extend the familiar results to systems that are not uniform and not in equilibrium macroscopically. At various places in the development, we make use of the equations of conservation of mass, momentum, and energy, as well as the equation of change for entropy, from transport phenomena.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.5048320</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Energy conservation ; Entropy ; Fluid dynamics ; Mathematical analysis ; Open systems ; Physics ; Thermodynamics ; Transport phenomena</subject><ispartof>Physics of fluids (1994), 2019-02, Vol.31 (2), p.21202</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-a177c8053f8ba4592469c92216a15661c75a42d783ebc130668821ae921056f43</citedby><cites>FETCH-LOGICAL-c292t-a177c8053f8ba4592469c92216a15661c75a42d783ebc130668821ae921056f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1553,27900,27901</link.rule.ids></links><search><creatorcontrib>Swaney, Ross E.</creatorcontrib><creatorcontrib>Bird, R. Byron</creatorcontrib><title>Transport phenomena and thermodynamics: Multicomponent mixtures</title><title>Physics of fluids (1994)</title><description>In Swaney and Bird [Chem. Eng. Educ. 51, 83 (2017)], the authors discussed some heretofore unappreciated relations between the equations of transport phenomena and those of thermodynamics for the case of pure fluids. Here we extend the discussion to multicomponent mixtures and open systems with the associated convective terms, and show how several key equations in thermodynamics may be derived by using the equations of energy, mechanical energy, and entropy from transport phenomena. These derivations point out some features of the thermodynamic equations that are not often recognized, and elucidate the meaning of phrases such as “quasi-steady-state processes.” We show how one can obtain our version of the first law dU=dQ−p¯¯dV+∫Vt−τ:∇v+∑α=1Njα⋅gαdVdt−∫A(t)(n⋅ρĤṽ)dAdt,our version of the second law T¯¯dS=dQ+∫Vt−τ:∇v+∑α=1Njα⋅gαdVdt−∑α=1Nμ¯¯αdnα−∫A(t)(n⋅ρĤṽ)dAdt, and Gibbs’ fundamental relation dU=T¯¯dS−p¯¯dV+∑αμ¯¯αdnα. The double overbars indicate suitably averaged values and extend the familiar results to systems that are not uniform and not in equilibrium macroscopically. At various places in the development, we make use of the equations of conservation of mass, momentum, and energy, as well as the equation of change for entropy, from transport phenomena.</description><subject>Energy conservation</subject><subject>Entropy</subject><subject>Fluid dynamics</subject><subject>Mathematical analysis</subject><subject>Open systems</subject><subject>Physics</subject><subject>Thermodynamics</subject><subject>Transport phenomena</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEUBeAgCtbqwjcYcKUwNTeZ3EnciBT_oOKmrkOaZuiUTjImGbBv75S6dnXv4uMcOIRcA50BRX4PM0EryRk9IROgUpU1Ip4e_pqWiBzOyUVKW0opVwwn5HEZjU99iLnoN86HznlTGL8u8sbFLqz33nStTQ_Fx7DLrQ1dH7zzuejanzxEly7JWWN2yV393Sn5enlezt_Kxefr-_xpUVqmWC4N1LWVVPBGrkwlFKtQWcUYoAGBCLYWpmLrWnK3ssApopQMjFMMqMCm4lNyc8ztY_geXMp6G4box0o9hlAloJZiVLdHZWNIKbpG97HtTNxroPqwjwb9t89o74422Tab3Ab_D_4FYkpjVg</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Swaney, Ross E.</creator><creator>Bird, R. Byron</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201902</creationdate><title>Transport phenomena and thermodynamics: Multicomponent mixtures</title><author>Swaney, Ross E. ; Bird, R. Byron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-a177c8053f8ba4592469c92216a15661c75a42d783ebc130668821ae921056f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Energy conservation</topic><topic>Entropy</topic><topic>Fluid dynamics</topic><topic>Mathematical analysis</topic><topic>Open systems</topic><topic>Physics</topic><topic>Thermodynamics</topic><topic>Transport phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swaney, Ross E.</creatorcontrib><creatorcontrib>Bird, R. Byron</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swaney, Ross E.</au><au>Bird, R. Byron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport phenomena and thermodynamics: Multicomponent mixtures</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2019-02</date><risdate>2019</risdate><volume>31</volume><issue>2</issue><spage>21202</spage><pages>21202-</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>In Swaney and Bird [Chem. Eng. Educ. 51, 83 (2017)], the authors discussed some heretofore unappreciated relations between the equations of transport phenomena and those of thermodynamics for the case of pure fluids. Here we extend the discussion to multicomponent mixtures and open systems with the associated convective terms, and show how several key equations in thermodynamics may be derived by using the equations of energy, mechanical energy, and entropy from transport phenomena. These derivations point out some features of the thermodynamic equations that are not often recognized, and elucidate the meaning of phrases such as “quasi-steady-state processes.” We show how one can obtain our version of the first law dU=dQ−p¯¯dV+∫Vt−τ:∇v+∑α=1Njα⋅gαdVdt−∫A(t)(n⋅ρĤṽ)dAdt,our version of the second law T¯¯dS=dQ+∫Vt−τ:∇v+∑α=1Njα⋅gαdVdt−∑α=1Nμ¯¯αdnα−∫A(t)(n⋅ρĤṽ)dAdt, and Gibbs’ fundamental relation dU=T¯¯dS−p¯¯dV+∑αμ¯¯αdnα. The double overbars indicate suitably averaged values and extend the familiar results to systems that are not uniform and not in equilibrium macroscopically. At various places in the development, we make use of the equations of conservation of mass, momentum, and energy, as well as the equation of change for entropy, from transport phenomena.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5048320</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2019-02, Vol.31 (2), p.21202
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_1_5048320
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive
subjects Energy conservation
Entropy
Fluid dynamics
Mathematical analysis
Open systems
Physics
Thermodynamics
Transport phenomena
title Transport phenomena and thermodynamics: Multicomponent mixtures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T17%3A34%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20phenomena%20and%20thermodynamics:%20Multicomponent%20mixtures&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Swaney,%20Ross%20E.&rft.date=2019-02&rft.volume=31&rft.issue=2&rft.spage=21202&rft.pages=21202-&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.5048320&rft_dat=%3Cproquest_scita%3E2160951785%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-a177c8053f8ba4592469c92216a15661c75a42d783ebc130668821ae921056f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2160951785&rft_id=info:pmid/&rfr_iscdi=true