Loading…
Transport phenomena and thermodynamics: Multicomponent mixtures
In Swaney and Bird [Chem. Eng. Educ. 51, 83 (2017)], the authors discussed some heretofore unappreciated relations between the equations of transport phenomena and those of thermodynamics for the case of pure fluids. Here we extend the discussion to multicomponent mixtures and open systems with the...
Saved in:
Published in: | Physics of fluids (1994) 2019-02, Vol.31 (2), p.21202 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c292t-a177c8053f8ba4592469c92216a15661c75a42d783ebc130668821ae921056f43 |
---|---|
cites | cdi_FETCH-LOGICAL-c292t-a177c8053f8ba4592469c92216a15661c75a42d783ebc130668821ae921056f43 |
container_end_page | |
container_issue | 2 |
container_start_page | 21202 |
container_title | Physics of fluids (1994) |
container_volume | 31 |
creator | Swaney, Ross E. Bird, R. Byron |
description | In Swaney and Bird [Chem. Eng. Educ. 51, 83 (2017)], the authors discussed some heretofore unappreciated relations between the equations of transport phenomena and those of thermodynamics for the case of pure fluids. Here we extend the discussion to multicomponent mixtures and open systems with the associated convective terms, and show how several key equations in thermodynamics may be derived by using the equations of energy, mechanical energy, and entropy from transport phenomena. These derivations point out some features of the thermodynamic equations that are not often recognized, and elucidate the meaning of phrases such as “quasi-steady-state processes.” We show how one can obtain our version of the first law dU=dQ−p¯¯dV+∫Vt−τ:∇v+∑α=1Njα⋅gαdVdt−∫A(t)(n⋅ρĤṽ)dAdt,our version of the second law T¯¯dS=dQ+∫Vt−τ:∇v+∑α=1Njα⋅gαdVdt−∑α=1Nμ¯¯αdnα−∫A(t)(n⋅ρĤṽ)dAdt, and Gibbs’ fundamental relation dU=T¯¯dS−p¯¯dV+∑αμ¯¯αdnα. The double overbars indicate suitably averaged values and extend the familiar results to systems that are not uniform and not in equilibrium macroscopically. At various places in the development, we make use of the equations of conservation of mass, momentum, and energy, as well as the equation of change for entropy, from transport phenomena. |
doi_str_mv | 10.1063/1.5048320 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5048320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2160951785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-a177c8053f8ba4592469c92216a15661c75a42d783ebc130668821ae921056f43</originalsourceid><addsrcrecordid>eNp90M1KAzEUBeAgCtbqwjcYcKUwNTeZ3EnciBT_oOKmrkOaZuiUTjImGbBv75S6dnXv4uMcOIRcA50BRX4PM0EryRk9IROgUpU1Ip4e_pqWiBzOyUVKW0opVwwn5HEZjU99iLnoN86HznlTGL8u8sbFLqz33nStTQ_Fx7DLrQ1dH7zzuejanzxEly7JWWN2yV393Sn5enlezt_Kxefr-_xpUVqmWC4N1LWVVPBGrkwlFKtQWcUYoAGBCLYWpmLrWnK3ssApopQMjFMMqMCm4lNyc8ztY_geXMp6G4box0o9hlAloJZiVLdHZWNIKbpG97HtTNxroPqwjwb9t89o74422Tab3Ab_D_4FYkpjVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2160951785</pqid></control><display><type>article</type><title>Transport phenomena and thermodynamics: Multicomponent mixtures</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Swaney, Ross E. ; Bird, R. Byron</creator><creatorcontrib>Swaney, Ross E. ; Bird, R. Byron</creatorcontrib><description>In Swaney and Bird [Chem. Eng. Educ. 51, 83 (2017)], the authors discussed some heretofore unappreciated relations between the equations of transport phenomena and those of thermodynamics for the case of pure fluids. Here we extend the discussion to multicomponent mixtures and open systems with the associated convective terms, and show how several key equations in thermodynamics may be derived by using the equations of energy, mechanical energy, and entropy from transport phenomena. These derivations point out some features of the thermodynamic equations that are not often recognized, and elucidate the meaning of phrases such as “quasi-steady-state processes.” We show how one can obtain our version of the first law dU=dQ−p¯¯dV+∫Vt−τ:∇v+∑α=1Njα⋅gαdVdt−∫A(t)(n⋅ρĤṽ)dAdt,our version of the second law T¯¯dS=dQ+∫Vt−τ:∇v+∑α=1Njα⋅gαdVdt−∑α=1Nμ¯¯αdnα−∫A(t)(n⋅ρĤṽ)dAdt, and Gibbs’ fundamental relation dU=T¯¯dS−p¯¯dV+∑αμ¯¯αdnα. The double overbars indicate suitably averaged values and extend the familiar results to systems that are not uniform and not in equilibrium macroscopically. At various places in the development, we make use of the equations of conservation of mass, momentum, and energy, as well as the equation of change for entropy, from transport phenomena.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.5048320</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Energy conservation ; Entropy ; Fluid dynamics ; Mathematical analysis ; Open systems ; Physics ; Thermodynamics ; Transport phenomena</subject><ispartof>Physics of fluids (1994), 2019-02, Vol.31 (2), p.21202</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-a177c8053f8ba4592469c92216a15661c75a42d783ebc130668821ae921056f43</citedby><cites>FETCH-LOGICAL-c292t-a177c8053f8ba4592469c92216a15661c75a42d783ebc130668821ae921056f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1553,27900,27901</link.rule.ids></links><search><creatorcontrib>Swaney, Ross E.</creatorcontrib><creatorcontrib>Bird, R. Byron</creatorcontrib><title>Transport phenomena and thermodynamics: Multicomponent mixtures</title><title>Physics of fluids (1994)</title><description>In Swaney and Bird [Chem. Eng. Educ. 51, 83 (2017)], the authors discussed some heretofore unappreciated relations between the equations of transport phenomena and those of thermodynamics for the case of pure fluids. Here we extend the discussion to multicomponent mixtures and open systems with the associated convective terms, and show how several key equations in thermodynamics may be derived by using the equations of energy, mechanical energy, and entropy from transport phenomena. These derivations point out some features of the thermodynamic equations that are not often recognized, and elucidate the meaning of phrases such as “quasi-steady-state processes.” We show how one can obtain our version of the first law dU=dQ−p¯¯dV+∫Vt−τ:∇v+∑α=1Njα⋅gαdVdt−∫A(t)(n⋅ρĤṽ)dAdt,our version of the second law T¯¯dS=dQ+∫Vt−τ:∇v+∑α=1Njα⋅gαdVdt−∑α=1Nμ¯¯αdnα−∫A(t)(n⋅ρĤṽ)dAdt, and Gibbs’ fundamental relation dU=T¯¯dS−p¯¯dV+∑αμ¯¯αdnα. The double overbars indicate suitably averaged values and extend the familiar results to systems that are not uniform and not in equilibrium macroscopically. At various places in the development, we make use of the equations of conservation of mass, momentum, and energy, as well as the equation of change for entropy, from transport phenomena.</description><subject>Energy conservation</subject><subject>Entropy</subject><subject>Fluid dynamics</subject><subject>Mathematical analysis</subject><subject>Open systems</subject><subject>Physics</subject><subject>Thermodynamics</subject><subject>Transport phenomena</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEUBeAgCtbqwjcYcKUwNTeZ3EnciBT_oOKmrkOaZuiUTjImGbBv75S6dnXv4uMcOIRcA50BRX4PM0EryRk9IROgUpU1Ip4e_pqWiBzOyUVKW0opVwwn5HEZjU99iLnoN86HznlTGL8u8sbFLqz33nStTQ_Fx7DLrQ1dH7zzuejanzxEly7JWWN2yV393Sn5enlezt_Kxefr-_xpUVqmWC4N1LWVVPBGrkwlFKtQWcUYoAGBCLYWpmLrWnK3ssApopQMjFMMqMCm4lNyc8ztY_geXMp6G4box0o9hlAloJZiVLdHZWNIKbpG97HtTNxroPqwjwb9t89o74422Tab3Ab_D_4FYkpjVg</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Swaney, Ross E.</creator><creator>Bird, R. Byron</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201902</creationdate><title>Transport phenomena and thermodynamics: Multicomponent mixtures</title><author>Swaney, Ross E. ; Bird, R. Byron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-a177c8053f8ba4592469c92216a15661c75a42d783ebc130668821ae921056f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Energy conservation</topic><topic>Entropy</topic><topic>Fluid dynamics</topic><topic>Mathematical analysis</topic><topic>Open systems</topic><topic>Physics</topic><topic>Thermodynamics</topic><topic>Transport phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swaney, Ross E.</creatorcontrib><creatorcontrib>Bird, R. Byron</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swaney, Ross E.</au><au>Bird, R. Byron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport phenomena and thermodynamics: Multicomponent mixtures</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2019-02</date><risdate>2019</risdate><volume>31</volume><issue>2</issue><spage>21202</spage><pages>21202-</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>In Swaney and Bird [Chem. Eng. Educ. 51, 83 (2017)], the authors discussed some heretofore unappreciated relations between the equations of transport phenomena and those of thermodynamics for the case of pure fluids. Here we extend the discussion to multicomponent mixtures and open systems with the associated convective terms, and show how several key equations in thermodynamics may be derived by using the equations of energy, mechanical energy, and entropy from transport phenomena. These derivations point out some features of the thermodynamic equations that are not often recognized, and elucidate the meaning of phrases such as “quasi-steady-state processes.” We show how one can obtain our version of the first law dU=dQ−p¯¯dV+∫Vt−τ:∇v+∑α=1Njα⋅gαdVdt−∫A(t)(n⋅ρĤṽ)dAdt,our version of the second law T¯¯dS=dQ+∫Vt−τ:∇v+∑α=1Njα⋅gαdVdt−∑α=1Nμ¯¯αdnα−∫A(t)(n⋅ρĤṽ)dAdt, and Gibbs’ fundamental relation dU=T¯¯dS−p¯¯dV+∑αμ¯¯αdnα. The double overbars indicate suitably averaged values and extend the familiar results to systems that are not uniform and not in equilibrium macroscopically. At various places in the development, we make use of the equations of conservation of mass, momentum, and energy, as well as the equation of change for entropy, from transport phenomena.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5048320</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2019-02, Vol.31 (2), p.21202 |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5048320 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive |
subjects | Energy conservation Entropy Fluid dynamics Mathematical analysis Open systems Physics Thermodynamics Transport phenomena |
title | Transport phenomena and thermodynamics: Multicomponent mixtures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T17%3A34%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20phenomena%20and%20thermodynamics:%20Multicomponent%20mixtures&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Swaney,%20Ross%20E.&rft.date=2019-02&rft.volume=31&rft.issue=2&rft.spage=21202&rft.pages=21202-&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.5048320&rft_dat=%3Cproquest_scita%3E2160951785%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-a177c8053f8ba4592469c92216a15661c75a42d783ebc130668821ae921056f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2160951785&rft_id=info:pmid/&rfr_iscdi=true |