Loading…
Plasmon resonant amplification of hot electron-driven photocatalysis
We report plasmon resonant excitation of hot electrons in a metal based photocatalyst in the oxygen evolution half reaction in aqueous solution. Here, the photocatalyst consists of a 100-nm thick Au film deposited on a corrugated silicon substrate. In this configuration, hot electrons photoexcited i...
Saved in:
Published in: | Applied physics letters 2018-09, Vol.113 (11) |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c389t-6e939a3aa97a7f9961b745fe4336b064cf1a38601b48e4c2ee0e321a836a5eca3 |
---|---|
cites | cdi_FETCH-LOGICAL-c389t-6e939a3aa97a7f9961b745fe4336b064cf1a38601b48e4c2ee0e321a836a5eca3 |
container_end_page | |
container_issue | 11 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 113 |
creator | Shen, Lang Gibson, George N. Poudel, Nirakar Hou, Bingya Chen, Jihan Shi, Haotian Guignon, Ernest Cady, Nathaniel C. Page, William D. Pilar, Arturo Cronin, Stephen B. |
description | We report plasmon resonant excitation of hot electrons in a metal based photocatalyst in the oxygen evolution half reaction in aqueous solution. Here, the photocatalyst consists of a 100-nm thick Au film deposited on a corrugated silicon substrate. In this configuration, hot electrons photoexcited in the metal are injected into the solution, ultimately reversing the water oxidation reaction (O2 + 4H+ + 4e− ⇋ 2H2O) and producing a photocurrent. In order to amplify this process, the gold electrode is patterned into a plasmon resonant grating structure with a pitch of 500 nm. The photocurrent (i.e., charge transfer rate) is measured as a function of incident angle using 633 nm wavelength light. We observe peaks in the photocurrent at incident angles of ±9° from normal when the light is polarized parallel to the incident plane (p-polarization) and perpendicular to the lines on the grating. Based on these peaks, we estimate an overall plasmonic gain (or amplification) factor of 2.1× in the charge transfer rate. At these same angles, we also observe sharp dips in the photoreflectance, corresponding to the condition when there is wavevector matching between the incident light and the plasmon mode in the grating. No angle dependence is observed in the photocurrent or photoreflectance when the incident light is polarized perpendicular to the incident plane (s-polarization) and parallel to the lines on the grating. Finite difference time domain simulations also predict sharp dips in the photoreflectance at ±9°, and the electric field intensity profiles show clear excitation of a plasmon-resonant mode when illuminated at those angles with p-polarized light. |
doi_str_mv | 10.1063/1.5048582 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5048582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2102110621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-6e939a3aa97a7f9961b745fe4336b064cf1a38601b48e4c2ee0e321a836a5eca3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX-w6ElhNZNks5uj1E8o6EHPIU0TmrJN1mRb6L83dYseBE_DDA8zw4vQOeAbwJzewk2FWVM15ACNANd1SQGaQzTCGNOSiwqO0UlKy9xWhNIRun9rVVoFX0STgle-L9Sqa511WvUuj4MtFqEvTGt0H4Mv59FtjC-6PAyZqHabXDpFR1a1yZzt6xh9PD68T57L6evTy-RuWmraiL7kRlChqFKiVrUVgsOsZpU1jFI-w5xpC4o2HMOMNYZpYgw2lIBqKFeV0YqO0cWwN6TeyaRdb_RCB-_zcxIYF4yIjC4H1MXwuTapl8uwjj7_JQlgAjkmAlldDUrHkFI0VnbRrVTcSsByl6QEuU8y2-vB7i5-x_KDNyH-QtnN7X_47-YvAvqBEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2102110621</pqid></control><display><type>article</type><title>Plasmon resonant amplification of hot electron-driven photocatalysis</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP - American Institute of Physics</source><creator>Shen, Lang ; Gibson, George N. ; Poudel, Nirakar ; Hou, Bingya ; Chen, Jihan ; Shi, Haotian ; Guignon, Ernest ; Cady, Nathaniel C. ; Page, William D. ; Pilar, Arturo ; Cronin, Stephen B.</creator><creatorcontrib>Shen, Lang ; Gibson, George N. ; Poudel, Nirakar ; Hou, Bingya ; Chen, Jihan ; Shi, Haotian ; Guignon, Ernest ; Cady, Nathaniel C. ; Page, William D. ; Pilar, Arturo ; Cronin, Stephen B.</creatorcontrib><description>We report plasmon resonant excitation of hot electrons in a metal based photocatalyst in the oxygen evolution half reaction in aqueous solution. Here, the photocatalyst consists of a 100-nm thick Au film deposited on a corrugated silicon substrate. In this configuration, hot electrons photoexcited in the metal are injected into the solution, ultimately reversing the water oxidation reaction (O2 + 4H+ + 4e− ⇋ 2H2O) and producing a photocurrent. In order to amplify this process, the gold electrode is patterned into a plasmon resonant grating structure with a pitch of 500 nm. The photocurrent (i.e., charge transfer rate) is measured as a function of incident angle using 633 nm wavelength light. We observe peaks in the photocurrent at incident angles of ±9° from normal when the light is polarized parallel to the incident plane (p-polarization) and perpendicular to the lines on the grating. Based on these peaks, we estimate an overall plasmonic gain (or amplification) factor of 2.1× in the charge transfer rate. At these same angles, we also observe sharp dips in the photoreflectance, corresponding to the condition when there is wavevector matching between the incident light and the plasmon mode in the grating. No angle dependence is observed in the photocurrent or photoreflectance when the incident light is polarized perpendicular to the incident plane (s-polarization) and parallel to the lines on the grating. Finite difference time domain simulations also predict sharp dips in the photoreflectance at ±9°, and the electric field intensity profiles show clear excitation of a plasmon-resonant mode when illuminated at those angles with p-polarized light.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5048582</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Amplification ; Applied physics ; Charge transfer ; Chemical evolution ; Dependence ; Electrons ; Excitation ; Gain ; Gold ; Hot electrons ; Incident light ; Oxidation ; Photocatalysis ; Photocatalysts ; Photoelectric effect ; Photoelectric emission ; Polarization ; Polarized light ; Silicon substrates</subject><ispartof>Applied physics letters, 2018-09, Vol.113 (11)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-6e939a3aa97a7f9961b745fe4336b064cf1a38601b48e4c2ee0e321a836a5eca3</citedby><cites>FETCH-LOGICAL-c389t-6e939a3aa97a7f9961b745fe4336b064cf1a38601b48e4c2ee0e321a836a5eca3</cites><orcidid>0000-0001-9153-7687 ; 0000-0002-9755-4821 ; 0000000191537687 ; 0000000297554821</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5048582$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,778,780,791,881,27900,27901,76351</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1469429$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Lang</creatorcontrib><creatorcontrib>Gibson, George N.</creatorcontrib><creatorcontrib>Poudel, Nirakar</creatorcontrib><creatorcontrib>Hou, Bingya</creatorcontrib><creatorcontrib>Chen, Jihan</creatorcontrib><creatorcontrib>Shi, Haotian</creatorcontrib><creatorcontrib>Guignon, Ernest</creatorcontrib><creatorcontrib>Cady, Nathaniel C.</creatorcontrib><creatorcontrib>Page, William D.</creatorcontrib><creatorcontrib>Pilar, Arturo</creatorcontrib><creatorcontrib>Cronin, Stephen B.</creatorcontrib><title>Plasmon resonant amplification of hot electron-driven photocatalysis</title><title>Applied physics letters</title><description>We report plasmon resonant excitation of hot electrons in a metal based photocatalyst in the oxygen evolution half reaction in aqueous solution. Here, the photocatalyst consists of a 100-nm thick Au film deposited on a corrugated silicon substrate. In this configuration, hot electrons photoexcited in the metal are injected into the solution, ultimately reversing the water oxidation reaction (O2 + 4H+ + 4e− ⇋ 2H2O) and producing a photocurrent. In order to amplify this process, the gold electrode is patterned into a plasmon resonant grating structure with a pitch of 500 nm. The photocurrent (i.e., charge transfer rate) is measured as a function of incident angle using 633 nm wavelength light. We observe peaks in the photocurrent at incident angles of ±9° from normal when the light is polarized parallel to the incident plane (p-polarization) and perpendicular to the lines on the grating. Based on these peaks, we estimate an overall plasmonic gain (or amplification) factor of 2.1× in the charge transfer rate. At these same angles, we also observe sharp dips in the photoreflectance, corresponding to the condition when there is wavevector matching between the incident light and the plasmon mode in the grating. No angle dependence is observed in the photocurrent or photoreflectance when the incident light is polarized perpendicular to the incident plane (s-polarization) and parallel to the lines on the grating. Finite difference time domain simulations also predict sharp dips in the photoreflectance at ±9°, and the electric field intensity profiles show clear excitation of a plasmon-resonant mode when illuminated at those angles with p-polarized light.</description><subject>Amplification</subject><subject>Applied physics</subject><subject>Charge transfer</subject><subject>Chemical evolution</subject><subject>Dependence</subject><subject>Electrons</subject><subject>Excitation</subject><subject>Gain</subject><subject>Gold</subject><subject>Hot electrons</subject><subject>Incident light</subject><subject>Oxidation</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Polarization</subject><subject>Polarized light</subject><subject>Silicon substrates</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX-w6ElhNZNks5uj1E8o6EHPIU0TmrJN1mRb6L83dYseBE_DDA8zw4vQOeAbwJzewk2FWVM15ACNANd1SQGaQzTCGNOSiwqO0UlKy9xWhNIRun9rVVoFX0STgle-L9Sqa511WvUuj4MtFqEvTGt0H4Mv59FtjC-6PAyZqHabXDpFR1a1yZzt6xh9PD68T57L6evTy-RuWmraiL7kRlChqFKiVrUVgsOsZpU1jFI-w5xpC4o2HMOMNYZpYgw2lIBqKFeV0YqO0cWwN6TeyaRdb_RCB-_zcxIYF4yIjC4H1MXwuTapl8uwjj7_JQlgAjkmAlldDUrHkFI0VnbRrVTcSsByl6QEuU8y2-vB7i5-x_KDNyH-QtnN7X_47-YvAvqBEA</recordid><startdate>20180910</startdate><enddate>20180910</enddate><creator>Shen, Lang</creator><creator>Gibson, George N.</creator><creator>Poudel, Nirakar</creator><creator>Hou, Bingya</creator><creator>Chen, Jihan</creator><creator>Shi, Haotian</creator><creator>Guignon, Ernest</creator><creator>Cady, Nathaniel C.</creator><creator>Page, William D.</creator><creator>Pilar, Arturo</creator><creator>Cronin, Stephen B.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9153-7687</orcidid><orcidid>https://orcid.org/0000-0002-9755-4821</orcidid><orcidid>https://orcid.org/0000000191537687</orcidid><orcidid>https://orcid.org/0000000297554821</orcidid></search><sort><creationdate>20180910</creationdate><title>Plasmon resonant amplification of hot electron-driven photocatalysis</title><author>Shen, Lang ; Gibson, George N. ; Poudel, Nirakar ; Hou, Bingya ; Chen, Jihan ; Shi, Haotian ; Guignon, Ernest ; Cady, Nathaniel C. ; Page, William D. ; Pilar, Arturo ; Cronin, Stephen B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-6e939a3aa97a7f9961b745fe4336b064cf1a38601b48e4c2ee0e321a836a5eca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amplification</topic><topic>Applied physics</topic><topic>Charge transfer</topic><topic>Chemical evolution</topic><topic>Dependence</topic><topic>Electrons</topic><topic>Excitation</topic><topic>Gain</topic><topic>Gold</topic><topic>Hot electrons</topic><topic>Incident light</topic><topic>Oxidation</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Polarization</topic><topic>Polarized light</topic><topic>Silicon substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Lang</creatorcontrib><creatorcontrib>Gibson, George N.</creatorcontrib><creatorcontrib>Poudel, Nirakar</creatorcontrib><creatorcontrib>Hou, Bingya</creatorcontrib><creatorcontrib>Chen, Jihan</creatorcontrib><creatorcontrib>Shi, Haotian</creatorcontrib><creatorcontrib>Guignon, Ernest</creatorcontrib><creatorcontrib>Cady, Nathaniel C.</creatorcontrib><creatorcontrib>Page, William D.</creatorcontrib><creatorcontrib>Pilar, Arturo</creatorcontrib><creatorcontrib>Cronin, Stephen B.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Lang</au><au>Gibson, George N.</au><au>Poudel, Nirakar</au><au>Hou, Bingya</au><au>Chen, Jihan</au><au>Shi, Haotian</au><au>Guignon, Ernest</au><au>Cady, Nathaniel C.</au><au>Page, William D.</au><au>Pilar, Arturo</au><au>Cronin, Stephen B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmon resonant amplification of hot electron-driven photocatalysis</atitle><jtitle>Applied physics letters</jtitle><date>2018-09-10</date><risdate>2018</risdate><volume>113</volume><issue>11</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We report plasmon resonant excitation of hot electrons in a metal based photocatalyst in the oxygen evolution half reaction in aqueous solution. Here, the photocatalyst consists of a 100-nm thick Au film deposited on a corrugated silicon substrate. In this configuration, hot electrons photoexcited in the metal are injected into the solution, ultimately reversing the water oxidation reaction (O2 + 4H+ + 4e− ⇋ 2H2O) and producing a photocurrent. In order to amplify this process, the gold electrode is patterned into a plasmon resonant grating structure with a pitch of 500 nm. The photocurrent (i.e., charge transfer rate) is measured as a function of incident angle using 633 nm wavelength light. We observe peaks in the photocurrent at incident angles of ±9° from normal when the light is polarized parallel to the incident plane (p-polarization) and perpendicular to the lines on the grating. Based on these peaks, we estimate an overall plasmonic gain (or amplification) factor of 2.1× in the charge transfer rate. At these same angles, we also observe sharp dips in the photoreflectance, corresponding to the condition when there is wavevector matching between the incident light and the plasmon mode in the grating. No angle dependence is observed in the photocurrent or photoreflectance when the incident light is polarized perpendicular to the incident plane (s-polarization) and parallel to the lines on the grating. Finite difference time domain simulations also predict sharp dips in the photoreflectance at ±9°, and the electric field intensity profiles show clear excitation of a plasmon-resonant mode when illuminated at those angles with p-polarized light.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5048582</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9153-7687</orcidid><orcidid>https://orcid.org/0000-0002-9755-4821</orcidid><orcidid>https://orcid.org/0000000191537687</orcidid><orcidid>https://orcid.org/0000000297554821</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2018-09, Vol.113 (11) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5048582 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP - American Institute of Physics |
subjects | Amplification Applied physics Charge transfer Chemical evolution Dependence Electrons Excitation Gain Gold Hot electrons Incident light Oxidation Photocatalysis Photocatalysts Photoelectric effect Photoelectric emission Polarization Polarized light Silicon substrates |
title | Plasmon resonant amplification of hot electron-driven photocatalysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T14%3A01%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmon%20resonant%20amplification%20of%20hot%20electron-driven%20photocatalysis&rft.jtitle=Applied%20physics%20letters&rft.au=Shen,%20Lang&rft.date=2018-09-10&rft.volume=113&rft.issue=11&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5048582&rft_dat=%3Cproquest_scita%3E2102110621%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-6e939a3aa97a7f9961b745fe4336b064cf1a38601b48e4c2ee0e321a836a5eca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2102110621&rft_id=info:pmid/&rfr_iscdi=true |