Loading…

Plasmon resonant amplification of hot electron-driven photocatalysis

We report plasmon resonant excitation of hot electrons in a metal based photocatalyst in the oxygen evolution half reaction in aqueous solution. Here, the photocatalyst consists of a 100-nm thick Au film deposited on a corrugated silicon substrate. In this configuration, hot electrons photoexcited i...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2018-09, Vol.113 (11)
Main Authors: Shen, Lang, Gibson, George N., Poudel, Nirakar, Hou, Bingya, Chen, Jihan, Shi, Haotian, Guignon, Ernest, Cady, Nathaniel C., Page, William D., Pilar, Arturo, Cronin, Stephen B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c389t-6e939a3aa97a7f9961b745fe4336b064cf1a38601b48e4c2ee0e321a836a5eca3
cites cdi_FETCH-LOGICAL-c389t-6e939a3aa97a7f9961b745fe4336b064cf1a38601b48e4c2ee0e321a836a5eca3
container_end_page
container_issue 11
container_start_page
container_title Applied physics letters
container_volume 113
creator Shen, Lang
Gibson, George N.
Poudel, Nirakar
Hou, Bingya
Chen, Jihan
Shi, Haotian
Guignon, Ernest
Cady, Nathaniel C.
Page, William D.
Pilar, Arturo
Cronin, Stephen B.
description We report plasmon resonant excitation of hot electrons in a metal based photocatalyst in the oxygen evolution half reaction in aqueous solution. Here, the photocatalyst consists of a 100-nm thick Au film deposited on a corrugated silicon substrate. In this configuration, hot electrons photoexcited in the metal are injected into the solution, ultimately reversing the water oxidation reaction (O2 + 4H+ + 4e− ⇋ 2H2O) and producing a photocurrent. In order to amplify this process, the gold electrode is patterned into a plasmon resonant grating structure with a pitch of 500 nm. The photocurrent (i.e., charge transfer rate) is measured as a function of incident angle using 633 nm wavelength light. We observe peaks in the photocurrent at incident angles of ±9° from normal when the light is polarized parallel to the incident plane (p-polarization) and perpendicular to the lines on the grating. Based on these peaks, we estimate an overall plasmonic gain (or amplification) factor of 2.1× in the charge transfer rate. At these same angles, we also observe sharp dips in the photoreflectance, corresponding to the condition when there is wavevector matching between the incident light and the plasmon mode in the grating. No angle dependence is observed in the photocurrent or photoreflectance when the incident light is polarized perpendicular to the incident plane (s-polarization) and parallel to the lines on the grating. Finite difference time domain simulations also predict sharp dips in the photoreflectance at ±9°, and the electric field intensity profiles show clear excitation of a plasmon-resonant mode when illuminated at those angles with p-polarized light.
doi_str_mv 10.1063/1.5048582
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5048582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2102110621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-6e939a3aa97a7f9961b745fe4336b064cf1a38601b48e4c2ee0e321a836a5eca3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX-w6ElhNZNks5uj1E8o6EHPIU0TmrJN1mRb6L83dYseBE_DDA8zw4vQOeAbwJzewk2FWVM15ACNANd1SQGaQzTCGNOSiwqO0UlKy9xWhNIRun9rVVoFX0STgle-L9Sqa511WvUuj4MtFqEvTGt0H4Mv59FtjC-6PAyZqHabXDpFR1a1yZzt6xh9PD68T57L6evTy-RuWmraiL7kRlChqFKiVrUVgsOsZpU1jFI-w5xpC4o2HMOMNYZpYgw2lIBqKFeV0YqO0cWwN6TeyaRdb_RCB-_zcxIYF4yIjC4H1MXwuTapl8uwjj7_JQlgAjkmAlldDUrHkFI0VnbRrVTcSsByl6QEuU8y2-vB7i5-x_KDNyH-QtnN7X_47-YvAvqBEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2102110621</pqid></control><display><type>article</type><title>Plasmon resonant amplification of hot electron-driven photocatalysis</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP - American Institute of Physics</source><creator>Shen, Lang ; Gibson, George N. ; Poudel, Nirakar ; Hou, Bingya ; Chen, Jihan ; Shi, Haotian ; Guignon, Ernest ; Cady, Nathaniel C. ; Page, William D. ; Pilar, Arturo ; Cronin, Stephen B.</creator><creatorcontrib>Shen, Lang ; Gibson, George N. ; Poudel, Nirakar ; Hou, Bingya ; Chen, Jihan ; Shi, Haotian ; Guignon, Ernest ; Cady, Nathaniel C. ; Page, William D. ; Pilar, Arturo ; Cronin, Stephen B.</creatorcontrib><description>We report plasmon resonant excitation of hot electrons in a metal based photocatalyst in the oxygen evolution half reaction in aqueous solution. Here, the photocatalyst consists of a 100-nm thick Au film deposited on a corrugated silicon substrate. In this configuration, hot electrons photoexcited in the metal are injected into the solution, ultimately reversing the water oxidation reaction (O2 + 4H+ + 4e− ⇋ 2H2O) and producing a photocurrent. In order to amplify this process, the gold electrode is patterned into a plasmon resonant grating structure with a pitch of 500 nm. The photocurrent (i.e., charge transfer rate) is measured as a function of incident angle using 633 nm wavelength light. We observe peaks in the photocurrent at incident angles of ±9° from normal when the light is polarized parallel to the incident plane (p-polarization) and perpendicular to the lines on the grating. Based on these peaks, we estimate an overall plasmonic gain (or amplification) factor of 2.1× in the charge transfer rate. At these same angles, we also observe sharp dips in the photoreflectance, corresponding to the condition when there is wavevector matching between the incident light and the plasmon mode in the grating. No angle dependence is observed in the photocurrent or photoreflectance when the incident light is polarized perpendicular to the incident plane (s-polarization) and parallel to the lines on the grating. Finite difference time domain simulations also predict sharp dips in the photoreflectance at ±9°, and the electric field intensity profiles show clear excitation of a plasmon-resonant mode when illuminated at those angles with p-polarized light.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5048582</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Amplification ; Applied physics ; Charge transfer ; Chemical evolution ; Dependence ; Electrons ; Excitation ; Gain ; Gold ; Hot electrons ; Incident light ; Oxidation ; Photocatalysis ; Photocatalysts ; Photoelectric effect ; Photoelectric emission ; Polarization ; Polarized light ; Silicon substrates</subject><ispartof>Applied physics letters, 2018-09, Vol.113 (11)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-6e939a3aa97a7f9961b745fe4336b064cf1a38601b48e4c2ee0e321a836a5eca3</citedby><cites>FETCH-LOGICAL-c389t-6e939a3aa97a7f9961b745fe4336b064cf1a38601b48e4c2ee0e321a836a5eca3</cites><orcidid>0000-0001-9153-7687 ; 0000-0002-9755-4821 ; 0000000191537687 ; 0000000297554821</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5048582$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,778,780,791,881,27900,27901,76351</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1469429$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Lang</creatorcontrib><creatorcontrib>Gibson, George N.</creatorcontrib><creatorcontrib>Poudel, Nirakar</creatorcontrib><creatorcontrib>Hou, Bingya</creatorcontrib><creatorcontrib>Chen, Jihan</creatorcontrib><creatorcontrib>Shi, Haotian</creatorcontrib><creatorcontrib>Guignon, Ernest</creatorcontrib><creatorcontrib>Cady, Nathaniel C.</creatorcontrib><creatorcontrib>Page, William D.</creatorcontrib><creatorcontrib>Pilar, Arturo</creatorcontrib><creatorcontrib>Cronin, Stephen B.</creatorcontrib><title>Plasmon resonant amplification of hot electron-driven photocatalysis</title><title>Applied physics letters</title><description>We report plasmon resonant excitation of hot electrons in a metal based photocatalyst in the oxygen evolution half reaction in aqueous solution. Here, the photocatalyst consists of a 100-nm thick Au film deposited on a corrugated silicon substrate. In this configuration, hot electrons photoexcited in the metal are injected into the solution, ultimately reversing the water oxidation reaction (O2 + 4H+ + 4e− ⇋ 2H2O) and producing a photocurrent. In order to amplify this process, the gold electrode is patterned into a plasmon resonant grating structure with a pitch of 500 nm. The photocurrent (i.e., charge transfer rate) is measured as a function of incident angle using 633 nm wavelength light. We observe peaks in the photocurrent at incident angles of ±9° from normal when the light is polarized parallel to the incident plane (p-polarization) and perpendicular to the lines on the grating. Based on these peaks, we estimate an overall plasmonic gain (or amplification) factor of 2.1× in the charge transfer rate. At these same angles, we also observe sharp dips in the photoreflectance, corresponding to the condition when there is wavevector matching between the incident light and the plasmon mode in the grating. No angle dependence is observed in the photocurrent or photoreflectance when the incident light is polarized perpendicular to the incident plane (s-polarization) and parallel to the lines on the grating. Finite difference time domain simulations also predict sharp dips in the photoreflectance at ±9°, and the electric field intensity profiles show clear excitation of a plasmon-resonant mode when illuminated at those angles with p-polarized light.</description><subject>Amplification</subject><subject>Applied physics</subject><subject>Charge transfer</subject><subject>Chemical evolution</subject><subject>Dependence</subject><subject>Electrons</subject><subject>Excitation</subject><subject>Gain</subject><subject>Gold</subject><subject>Hot electrons</subject><subject>Incident light</subject><subject>Oxidation</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Polarization</subject><subject>Polarized light</subject><subject>Silicon substrates</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX-w6ElhNZNks5uj1E8o6EHPIU0TmrJN1mRb6L83dYseBE_DDA8zw4vQOeAbwJzewk2FWVM15ACNANd1SQGaQzTCGNOSiwqO0UlKy9xWhNIRun9rVVoFX0STgle-L9Sqa511WvUuj4MtFqEvTGt0H4Mv59FtjC-6PAyZqHabXDpFR1a1yZzt6xh9PD68T57L6evTy-RuWmraiL7kRlChqFKiVrUVgsOsZpU1jFI-w5xpC4o2HMOMNYZpYgw2lIBqKFeV0YqO0cWwN6TeyaRdb_RCB-_zcxIYF4yIjC4H1MXwuTapl8uwjj7_JQlgAjkmAlldDUrHkFI0VnbRrVTcSsByl6QEuU8y2-vB7i5-x_KDNyH-QtnN7X_47-YvAvqBEA</recordid><startdate>20180910</startdate><enddate>20180910</enddate><creator>Shen, Lang</creator><creator>Gibson, George N.</creator><creator>Poudel, Nirakar</creator><creator>Hou, Bingya</creator><creator>Chen, Jihan</creator><creator>Shi, Haotian</creator><creator>Guignon, Ernest</creator><creator>Cady, Nathaniel C.</creator><creator>Page, William D.</creator><creator>Pilar, Arturo</creator><creator>Cronin, Stephen B.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9153-7687</orcidid><orcidid>https://orcid.org/0000-0002-9755-4821</orcidid><orcidid>https://orcid.org/0000000191537687</orcidid><orcidid>https://orcid.org/0000000297554821</orcidid></search><sort><creationdate>20180910</creationdate><title>Plasmon resonant amplification of hot electron-driven photocatalysis</title><author>Shen, Lang ; Gibson, George N. ; Poudel, Nirakar ; Hou, Bingya ; Chen, Jihan ; Shi, Haotian ; Guignon, Ernest ; Cady, Nathaniel C. ; Page, William D. ; Pilar, Arturo ; Cronin, Stephen B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-6e939a3aa97a7f9961b745fe4336b064cf1a38601b48e4c2ee0e321a836a5eca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amplification</topic><topic>Applied physics</topic><topic>Charge transfer</topic><topic>Chemical evolution</topic><topic>Dependence</topic><topic>Electrons</topic><topic>Excitation</topic><topic>Gain</topic><topic>Gold</topic><topic>Hot electrons</topic><topic>Incident light</topic><topic>Oxidation</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Polarization</topic><topic>Polarized light</topic><topic>Silicon substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Lang</creatorcontrib><creatorcontrib>Gibson, George N.</creatorcontrib><creatorcontrib>Poudel, Nirakar</creatorcontrib><creatorcontrib>Hou, Bingya</creatorcontrib><creatorcontrib>Chen, Jihan</creatorcontrib><creatorcontrib>Shi, Haotian</creatorcontrib><creatorcontrib>Guignon, Ernest</creatorcontrib><creatorcontrib>Cady, Nathaniel C.</creatorcontrib><creatorcontrib>Page, William D.</creatorcontrib><creatorcontrib>Pilar, Arturo</creatorcontrib><creatorcontrib>Cronin, Stephen B.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Lang</au><au>Gibson, George N.</au><au>Poudel, Nirakar</au><au>Hou, Bingya</au><au>Chen, Jihan</au><au>Shi, Haotian</au><au>Guignon, Ernest</au><au>Cady, Nathaniel C.</au><au>Page, William D.</au><au>Pilar, Arturo</au><au>Cronin, Stephen B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmon resonant amplification of hot electron-driven photocatalysis</atitle><jtitle>Applied physics letters</jtitle><date>2018-09-10</date><risdate>2018</risdate><volume>113</volume><issue>11</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We report plasmon resonant excitation of hot electrons in a metal based photocatalyst in the oxygen evolution half reaction in aqueous solution. Here, the photocatalyst consists of a 100-nm thick Au film deposited on a corrugated silicon substrate. In this configuration, hot electrons photoexcited in the metal are injected into the solution, ultimately reversing the water oxidation reaction (O2 + 4H+ + 4e− ⇋ 2H2O) and producing a photocurrent. In order to amplify this process, the gold electrode is patterned into a plasmon resonant grating structure with a pitch of 500 nm. The photocurrent (i.e., charge transfer rate) is measured as a function of incident angle using 633 nm wavelength light. We observe peaks in the photocurrent at incident angles of ±9° from normal when the light is polarized parallel to the incident plane (p-polarization) and perpendicular to the lines on the grating. Based on these peaks, we estimate an overall plasmonic gain (or amplification) factor of 2.1× in the charge transfer rate. At these same angles, we also observe sharp dips in the photoreflectance, corresponding to the condition when there is wavevector matching between the incident light and the plasmon mode in the grating. No angle dependence is observed in the photocurrent or photoreflectance when the incident light is polarized perpendicular to the incident plane (s-polarization) and parallel to the lines on the grating. Finite difference time domain simulations also predict sharp dips in the photoreflectance at ±9°, and the electric field intensity profiles show clear excitation of a plasmon-resonant mode when illuminated at those angles with p-polarized light.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5048582</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9153-7687</orcidid><orcidid>https://orcid.org/0000-0002-9755-4821</orcidid><orcidid>https://orcid.org/0000000191537687</orcidid><orcidid>https://orcid.org/0000000297554821</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2018-09, Vol.113 (11)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_1_5048582
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP - American Institute of Physics
subjects Amplification
Applied physics
Charge transfer
Chemical evolution
Dependence
Electrons
Excitation
Gain
Gold
Hot electrons
Incident light
Oxidation
Photocatalysis
Photocatalysts
Photoelectric effect
Photoelectric emission
Polarization
Polarized light
Silicon substrates
title Plasmon resonant amplification of hot electron-driven photocatalysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T14%3A01%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmon%20resonant%20amplification%20of%20hot%20electron-driven%20photocatalysis&rft.jtitle=Applied%20physics%20letters&rft.au=Shen,%20Lang&rft.date=2018-09-10&rft.volume=113&rft.issue=11&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5048582&rft_dat=%3Cproquest_scita%3E2102110621%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-6e939a3aa97a7f9961b745fe4336b064cf1a38601b48e4c2ee0e321a836a5eca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2102110621&rft_id=info:pmid/&rfr_iscdi=true