Loading…
Semi-Lagrangian difference approximations for distinct transfer operators
The paper gives a review of using the semi-Lagrangian approximation depending on the fulfillment of conservation laws for the transfer operator. We begin with approximations of the one-dimensional transfer equation and a parabolic one as simple methodological examples. For two-dimensional problems,...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2025 |
creator | Shaydurov, V. Efremov, A. Gileva, L. |
description | The paper gives a review of using the semi-Lagrangian approximation depending on the fulfillment of conservation laws for the transfer operator. We begin with approximations of the one-dimensional transfer equation and a parabolic one as simple methodological examples. For two-dimensional problems, first we apply one-dimensional approximations in two directions separately. Then we present another combined approximation along trajectories of the transfer operator. For parabolic and transfer equations, the principles of constructing discrete analogues are demonstrated for three different conservation laws of transfer operator (or the requirements of stability in the related discrete norms similar to the L1, L2, L∞ - norms). It is significant that different conservation laws yield distinct difference problems as well as distinct ways to justify their stability. |
doi_str_mv | 10.1063/1.5064877 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5064877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2125046329</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-ccad273ad163389f2dc760d6f06f9b9735f204477e7fb0ef26b9a0a185a89e2a3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtaPg_9gwZuwdZJsks1Rih-FggcVvIXpblJS7GZNUtF_b7QFb57mMA8z8w4hFxSmFCS_plMBsmmVOiATKgStlaTykEwAdFOzhr8ek5OU1gBMK9VOyPzJbny9wFXEYeVxqHrvnI126GyF4xjDp99g9mFIlQuxdFP2Q5erXHwqsAqjjZhDTGfkyOFbsuf7ekpe7m6fZw_14vF-PrtZ1CMTPNddhz1THHsqOW-1Y32nJPTSgXR6qRUXjkHTKGWVW4J1TC41AtJWYKstQ35KLndzy3HvW5uyWYdtHMpKwygT0EjOdFFXO5U6n38DmDGWKPHLUDA_rzLU7F_1H_4I8Q-asXf8G9rZasY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2125046329</pqid></control><display><type>conference_proceeding</type><title>Semi-Lagrangian difference approximations for distinct transfer operators</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Shaydurov, V. ; Efremov, A. ; Gileva, L.</creator><contributor>Todorov, Michail D.</contributor><creatorcontrib>Shaydurov, V. ; Efremov, A. ; Gileva, L. ; Todorov, Michail D.</creatorcontrib><description>The paper gives a review of using the semi-Lagrangian approximation depending on the fulfillment of conservation laws for the transfer operator. We begin with approximations of the one-dimensional transfer equation and a parabolic one as simple methodological examples. For two-dimensional problems, first we apply one-dimensional approximations in two directions separately. Then we present another combined approximation along trajectories of the transfer operator. For parabolic and transfer equations, the principles of constructing discrete analogues are demonstrated for three different conservation laws of transfer operator (or the requirements of stability in the related discrete norms similar to the L1, L2, L∞ - norms). It is significant that different conservation laws yield distinct difference problems as well as distinct ways to justify their stability.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5064877</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Approximation ; Conservation laws ; Mathematical analysis ; Norms ; Stability</subject><ispartof>AIP conference proceedings, 2018, Vol.2025 (1)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Todorov, Michail D.</contributor><creatorcontrib>Shaydurov, V.</creatorcontrib><creatorcontrib>Efremov, A.</creatorcontrib><creatorcontrib>Gileva, L.</creatorcontrib><title>Semi-Lagrangian difference approximations for distinct transfer operators</title><title>AIP conference proceedings</title><description>The paper gives a review of using the semi-Lagrangian approximation depending on the fulfillment of conservation laws for the transfer operator. We begin with approximations of the one-dimensional transfer equation and a parabolic one as simple methodological examples. For two-dimensional problems, first we apply one-dimensional approximations in two directions separately. Then we present another combined approximation along trajectories of the transfer operator. For parabolic and transfer equations, the principles of constructing discrete analogues are demonstrated for three different conservation laws of transfer operator (or the requirements of stability in the related discrete norms similar to the L1, L2, L∞ - norms). It is significant that different conservation laws yield distinct difference problems as well as distinct ways to justify their stability.</description><subject>Approximation</subject><subject>Conservation laws</subject><subject>Mathematical analysis</subject><subject>Norms</subject><subject>Stability</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90E1LAzEQBuAgCtaPg_9gwZuwdZJsks1Rih-FggcVvIXpblJS7GZNUtF_b7QFb57mMA8z8w4hFxSmFCS_plMBsmmVOiATKgStlaTykEwAdFOzhr8ek5OU1gBMK9VOyPzJbny9wFXEYeVxqHrvnI126GyF4xjDp99g9mFIlQuxdFP2Q5erXHwqsAqjjZhDTGfkyOFbsuf7ekpe7m6fZw_14vF-PrtZ1CMTPNddhz1THHsqOW-1Y32nJPTSgXR6qRUXjkHTKGWVW4J1TC41AtJWYKstQ35KLndzy3HvW5uyWYdtHMpKwygT0EjOdFFXO5U6n38DmDGWKPHLUDA_rzLU7F_1H_4I8Q-asXf8G9rZasY</recordid><startdate>20181025</startdate><enddate>20181025</enddate><creator>Shaydurov, V.</creator><creator>Efremov, A.</creator><creator>Gileva, L.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20181025</creationdate><title>Semi-Lagrangian difference approximations for distinct transfer operators</title><author>Shaydurov, V. ; Efremov, A. ; Gileva, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-ccad273ad163389f2dc760d6f06f9b9735f204477e7fb0ef26b9a0a185a89e2a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation</topic><topic>Conservation laws</topic><topic>Mathematical analysis</topic><topic>Norms</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaydurov, V.</creatorcontrib><creatorcontrib>Efremov, A.</creatorcontrib><creatorcontrib>Gileva, L.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaydurov, V.</au><au>Efremov, A.</au><au>Gileva, L.</au><au>Todorov, Michail D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Semi-Lagrangian difference approximations for distinct transfer operators</atitle><btitle>AIP conference proceedings</btitle><date>2018-10-25</date><risdate>2018</risdate><volume>2025</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The paper gives a review of using the semi-Lagrangian approximation depending on the fulfillment of conservation laws for the transfer operator. We begin with approximations of the one-dimensional transfer equation and a parabolic one as simple methodological examples. For two-dimensional problems, first we apply one-dimensional approximations in two directions separately. Then we present another combined approximation along trajectories of the transfer operator. For parabolic and transfer equations, the principles of constructing discrete analogues are demonstrated for three different conservation laws of transfer operator (or the requirements of stability in the related discrete norms similar to the L1, L2, L∞ - norms). It is significant that different conservation laws yield distinct difference problems as well as distinct ways to justify their stability.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5064877</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2018, Vol.2025 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5064877 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Approximation Conservation laws Mathematical analysis Norms Stability |
title | Semi-Lagrangian difference approximations for distinct transfer operators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A06%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Semi-Lagrangian%20difference%20approximations%20for%20distinct%20transfer%20operators&rft.btitle=AIP%20conference%20proceedings&rft.au=Shaydurov,%20V.&rft.date=2018-10-25&rft.volume=2025&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5064877&rft_dat=%3Cproquest_scita%3E2125046329%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p253t-ccad273ad163389f2dc760d6f06f9b9735f204477e7fb0ef26b9a0a185a89e2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2125046329&rft_id=info:pmid/&rfr_iscdi=true |