Loading…

Semi-Lagrangian difference approximations for distinct transfer operators

The paper gives a review of using the semi-Lagrangian approximation depending on the fulfillment of conservation laws for the transfer operator. We begin with approximations of the one-dimensional transfer equation and a parabolic one as simple methodological examples. For two-dimensional problems,...

Full description

Saved in:
Bibliographic Details
Main Authors: Shaydurov, V., Efremov, A., Gileva, L.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2025
creator Shaydurov, V.
Efremov, A.
Gileva, L.
description The paper gives a review of using the semi-Lagrangian approximation depending on the fulfillment of conservation laws for the transfer operator. We begin with approximations of the one-dimensional transfer equation and a parabolic one as simple methodological examples. For two-dimensional problems, first we apply one-dimensional approximations in two directions separately. Then we present another combined approximation along trajectories of the transfer operator. For parabolic and transfer equations, the principles of constructing discrete analogues are demonstrated for three different conservation laws of transfer operator (or the requirements of stability in the related discrete norms similar to the L1, L2, L∞ - norms). It is significant that different conservation laws yield distinct difference problems as well as distinct ways to justify their stability.
doi_str_mv 10.1063/1.5064877
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5064877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2125046329</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-ccad273ad163389f2dc760d6f06f9b9735f204477e7fb0ef26b9a0a185a89e2a3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtaPg_9gwZuwdZJsks1Rih-FggcVvIXpblJS7GZNUtF_b7QFb57mMA8z8w4hFxSmFCS_plMBsmmVOiATKgStlaTykEwAdFOzhr8ek5OU1gBMK9VOyPzJbny9wFXEYeVxqHrvnI126GyF4xjDp99g9mFIlQuxdFP2Q5erXHwqsAqjjZhDTGfkyOFbsuf7ekpe7m6fZw_14vF-PrtZ1CMTPNddhz1THHsqOW-1Y32nJPTSgXR6qRUXjkHTKGWVW4J1TC41AtJWYKstQ35KLndzy3HvW5uyWYdtHMpKwygT0EjOdFFXO5U6n38DmDGWKPHLUDA_rzLU7F_1H_4I8Q-asXf8G9rZasY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2125046329</pqid></control><display><type>conference_proceeding</type><title>Semi-Lagrangian difference approximations for distinct transfer operators</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Shaydurov, V. ; Efremov, A. ; Gileva, L.</creator><contributor>Todorov, Michail D.</contributor><creatorcontrib>Shaydurov, V. ; Efremov, A. ; Gileva, L. ; Todorov, Michail D.</creatorcontrib><description>The paper gives a review of using the semi-Lagrangian approximation depending on the fulfillment of conservation laws for the transfer operator. We begin with approximations of the one-dimensional transfer equation and a parabolic one as simple methodological examples. For two-dimensional problems, first we apply one-dimensional approximations in two directions separately. Then we present another combined approximation along trajectories of the transfer operator. For parabolic and transfer equations, the principles of constructing discrete analogues are demonstrated for three different conservation laws of transfer operator (or the requirements of stability in the related discrete norms similar to the L1, L2, L∞ - norms). It is significant that different conservation laws yield distinct difference problems as well as distinct ways to justify their stability.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5064877</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Approximation ; Conservation laws ; Mathematical analysis ; Norms ; Stability</subject><ispartof>AIP conference proceedings, 2018, Vol.2025 (1)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Todorov, Michail D.</contributor><creatorcontrib>Shaydurov, V.</creatorcontrib><creatorcontrib>Efremov, A.</creatorcontrib><creatorcontrib>Gileva, L.</creatorcontrib><title>Semi-Lagrangian difference approximations for distinct transfer operators</title><title>AIP conference proceedings</title><description>The paper gives a review of using the semi-Lagrangian approximation depending on the fulfillment of conservation laws for the transfer operator. We begin with approximations of the one-dimensional transfer equation and a parabolic one as simple methodological examples. For two-dimensional problems, first we apply one-dimensional approximations in two directions separately. Then we present another combined approximation along trajectories of the transfer operator. For parabolic and transfer equations, the principles of constructing discrete analogues are demonstrated for three different conservation laws of transfer operator (or the requirements of stability in the related discrete norms similar to the L1, L2, L∞ - norms). It is significant that different conservation laws yield distinct difference problems as well as distinct ways to justify their stability.</description><subject>Approximation</subject><subject>Conservation laws</subject><subject>Mathematical analysis</subject><subject>Norms</subject><subject>Stability</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90E1LAzEQBuAgCtaPg_9gwZuwdZJsks1Rih-FggcVvIXpblJS7GZNUtF_b7QFb57mMA8z8w4hFxSmFCS_plMBsmmVOiATKgStlaTykEwAdFOzhr8ek5OU1gBMK9VOyPzJbny9wFXEYeVxqHrvnI126GyF4xjDp99g9mFIlQuxdFP2Q5erXHwqsAqjjZhDTGfkyOFbsuf7ekpe7m6fZw_14vF-PrtZ1CMTPNddhz1THHsqOW-1Y32nJPTSgXR6qRUXjkHTKGWVW4J1TC41AtJWYKstQ35KLndzy3HvW5uyWYdtHMpKwygT0EjOdFFXO5U6n38DmDGWKPHLUDA_rzLU7F_1H_4I8Q-asXf8G9rZasY</recordid><startdate>20181025</startdate><enddate>20181025</enddate><creator>Shaydurov, V.</creator><creator>Efremov, A.</creator><creator>Gileva, L.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20181025</creationdate><title>Semi-Lagrangian difference approximations for distinct transfer operators</title><author>Shaydurov, V. ; Efremov, A. ; Gileva, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-ccad273ad163389f2dc760d6f06f9b9735f204477e7fb0ef26b9a0a185a89e2a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation</topic><topic>Conservation laws</topic><topic>Mathematical analysis</topic><topic>Norms</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaydurov, V.</creatorcontrib><creatorcontrib>Efremov, A.</creatorcontrib><creatorcontrib>Gileva, L.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaydurov, V.</au><au>Efremov, A.</au><au>Gileva, L.</au><au>Todorov, Michail D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Semi-Lagrangian difference approximations for distinct transfer operators</atitle><btitle>AIP conference proceedings</btitle><date>2018-10-25</date><risdate>2018</risdate><volume>2025</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The paper gives a review of using the semi-Lagrangian approximation depending on the fulfillment of conservation laws for the transfer operator. We begin with approximations of the one-dimensional transfer equation and a parabolic one as simple methodological examples. For two-dimensional problems, first we apply one-dimensional approximations in two directions separately. Then we present another combined approximation along trajectories of the transfer operator. For parabolic and transfer equations, the principles of constructing discrete analogues are demonstrated for three different conservation laws of transfer operator (or the requirements of stability in the related discrete norms similar to the L1, L2, L∞ - norms). It is significant that different conservation laws yield distinct difference problems as well as distinct ways to justify their stability.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5064877</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2018, Vol.2025 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_5064877
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Approximation
Conservation laws
Mathematical analysis
Norms
Stability
title Semi-Lagrangian difference approximations for distinct transfer operators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A06%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Semi-Lagrangian%20difference%20approximations%20for%20distinct%20transfer%20operators&rft.btitle=AIP%20conference%20proceedings&rft.au=Shaydurov,%20V.&rft.date=2018-10-25&rft.volume=2025&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5064877&rft_dat=%3Cproquest_scita%3E2125046329%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p253t-ccad273ad163389f2dc760d6f06f9b9735f204477e7fb0ef26b9a0a185a89e2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2125046329&rft_id=info:pmid/&rfr_iscdi=true