Loading…
AI approaches: Recent studies on shrinkage optimisation in injection moulding process
In producing plastic products, injection moulding was well known for its manufacturing process. The quality of the plastic product depends on a certain processing parameter, and defects may occur when the processing parameters are wrongly set up. The purpose of this paper is to review the techniques...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2030 |
creator | Hatta, N. M. Zain, A. M. Shayfull, Z. Sallehuddin, R. |
description | In producing plastic products, injection moulding was well known for its manufacturing process. The quality of the plastic product depends on a certain processing parameter, and defects may occur when the processing parameters are wrongly set up. The purpose of this paper is to review the techniques related to the optimisation in injection moulding process of the shrinkage defect. One of the two categories of optimisation approach are non-classical approach (Artificial Intelligence (AI) techniques) is reviewed by focusing on the shrinkage defects in optimising the injection moulding process from year 2012 until year 2016 (2017 instead). The result of review indicates that Artificial Neural Network (ANN) categorized as non-classical approach AI approach is considered as the most used by researchers for optimisation process besides shows good performance for optimisation of the injection moulding process. |
doi_str_mv | 10.1063/1.5066793 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5066793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132496767</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-4ffb887bf7e1355090606cd5615ebfdfe90eb8765ca93c1ae063ef3ea2ca80b73</originalsourceid><addsrcrecordid>eNp9UNFKwzAUDaLgnD74BwHfhM6kaZLGtzGcDgaCOPAtpOnNlrm1tUkF_952G_gmXLjcy7nnnHsQuqVkQolgD3TCiRBSsTM0opzTRAoqztGIEJUlacY-LtFVCFtCUiVlPkKr6QKbpmlrYzcQHvEbWKgiDrErPQRcVzhsWl99mjXguol-74OJvl_7obZgD8O-7nalr9a4J7IQwjW6cGYX4ObUx2g1f3qfvSTL1-fFbLpMmpSzmGTOFXkuCyeBMs6JIoIIW3JBORSudKAIFLkU3BrFLDXQfwiOgUmtyUkh2RjdHXl73a8OQtTbumurXlKnlKWZElIMqPsjKlgfD-510_q9aX_0d91qqk-R6aZ0_4Ep0UPGfwfsF7O7b0E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2132496767</pqid></control><display><type>conference_proceeding</type><title>AI approaches: Recent studies on shrinkage optimisation in injection moulding process</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Hatta, N. M. ; Zain, A. M. ; Shayfull, Z. ; Sallehuddin, R.</creator><contributor>Tahir, Muhammad Faheem Bin Mohd ; Saad, Mohd Nasir Bin Mat ; Jamaludin, Liyana Binti ; Abdullah, Mohd Mustafa Al-Bakri ; Rahim, Shayfull Zamree Bin Abd ; Ghazli, Mohd Fathullah bin ; Ahmad, Romisuhani</contributor><creatorcontrib>Hatta, N. M. ; Zain, A. M. ; Shayfull, Z. ; Sallehuddin, R. ; Tahir, Muhammad Faheem Bin Mohd ; Saad, Mohd Nasir Bin Mat ; Jamaludin, Liyana Binti ; Abdullah, Mohd Mustafa Al-Bakri ; Rahim, Shayfull Zamree Bin Abd ; Ghazli, Mohd Fathullah bin ; Ahmad, Romisuhani</creatorcontrib><description>In producing plastic products, injection moulding was well known for its manufacturing process. The quality of the plastic product depends on a certain processing parameter, and defects may occur when the processing parameters are wrongly set up. The purpose of this paper is to review the techniques related to the optimisation in injection moulding process of the shrinkage defect. One of the two categories of optimisation approach are non-classical approach (Artificial Intelligence (AI) techniques) is reviewed by focusing on the shrinkage defects in optimising the injection moulding process from year 2012 until year 2016 (2017 instead). The result of review indicates that Artificial Neural Network (ANN) categorized as non-classical approach AI approach is considered as the most used by researchers for optimisation process besides shows good performance for optimisation of the injection moulding process.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5066793</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial intelligence ; Artificial neural networks ; Defects ; Injection molding ; Optimization ; Process parameters ; Rapid prototyping ; Shrinkage</subject><ispartof>AIP conference proceedings, 2018, Vol.2030 (1)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids></links><search><contributor>Tahir, Muhammad Faheem Bin Mohd</contributor><contributor>Saad, Mohd Nasir Bin Mat</contributor><contributor>Jamaludin, Liyana Binti</contributor><contributor>Abdullah, Mohd Mustafa Al-Bakri</contributor><contributor>Rahim, Shayfull Zamree Bin Abd</contributor><contributor>Ghazli, Mohd Fathullah bin</contributor><contributor>Ahmad, Romisuhani</contributor><creatorcontrib>Hatta, N. M.</creatorcontrib><creatorcontrib>Zain, A. M.</creatorcontrib><creatorcontrib>Shayfull, Z.</creatorcontrib><creatorcontrib>Sallehuddin, R.</creatorcontrib><title>AI approaches: Recent studies on shrinkage optimisation in injection moulding process</title><title>AIP conference proceedings</title><description>In producing plastic products, injection moulding was well known for its manufacturing process. The quality of the plastic product depends on a certain processing parameter, and defects may occur when the processing parameters are wrongly set up. The purpose of this paper is to review the techniques related to the optimisation in injection moulding process of the shrinkage defect. One of the two categories of optimisation approach are non-classical approach (Artificial Intelligence (AI) techniques) is reviewed by focusing on the shrinkage defects in optimising the injection moulding process from year 2012 until year 2016 (2017 instead). The result of review indicates that Artificial Neural Network (ANN) categorized as non-classical approach AI approach is considered as the most used by researchers for optimisation process besides shows good performance for optimisation of the injection moulding process.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Defects</subject><subject>Injection molding</subject><subject>Optimization</subject><subject>Process parameters</subject><subject>Rapid prototyping</subject><subject>Shrinkage</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9UNFKwzAUDaLgnD74BwHfhM6kaZLGtzGcDgaCOPAtpOnNlrm1tUkF_952G_gmXLjcy7nnnHsQuqVkQolgD3TCiRBSsTM0opzTRAoqztGIEJUlacY-LtFVCFtCUiVlPkKr6QKbpmlrYzcQHvEbWKgiDrErPQRcVzhsWl99mjXguol-74OJvl_7obZgD8O-7nalr9a4J7IQwjW6cGYX4ObUx2g1f3qfvSTL1-fFbLpMmpSzmGTOFXkuCyeBMs6JIoIIW3JBORSudKAIFLkU3BrFLDXQfwiOgUmtyUkh2RjdHXl73a8OQtTbumurXlKnlKWZElIMqPsjKlgfD-510_q9aX_0d91qqk-R6aZ0_4Ep0UPGfwfsF7O7b0E</recordid><startdate>20181109</startdate><enddate>20181109</enddate><creator>Hatta, N. M.</creator><creator>Zain, A. M.</creator><creator>Shayfull, Z.</creator><creator>Sallehuddin, R.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20181109</creationdate><title>AI approaches: Recent studies on shrinkage optimisation in injection moulding process</title><author>Hatta, N. M. ; Zain, A. M. ; Shayfull, Z. ; Sallehuddin, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-4ffb887bf7e1355090606cd5615ebfdfe90eb8765ca93c1ae063ef3ea2ca80b73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Defects</topic><topic>Injection molding</topic><topic>Optimization</topic><topic>Process parameters</topic><topic>Rapid prototyping</topic><topic>Shrinkage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hatta, N. M.</creatorcontrib><creatorcontrib>Zain, A. M.</creatorcontrib><creatorcontrib>Shayfull, Z.</creatorcontrib><creatorcontrib>Sallehuddin, R.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hatta, N. M.</au><au>Zain, A. M.</au><au>Shayfull, Z.</au><au>Sallehuddin, R.</au><au>Tahir, Muhammad Faheem Bin Mohd</au><au>Saad, Mohd Nasir Bin Mat</au><au>Jamaludin, Liyana Binti</au><au>Abdullah, Mohd Mustafa Al-Bakri</au><au>Rahim, Shayfull Zamree Bin Abd</au><au>Ghazli, Mohd Fathullah bin</au><au>Ahmad, Romisuhani</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>AI approaches: Recent studies on shrinkage optimisation in injection moulding process</atitle><btitle>AIP conference proceedings</btitle><date>2018-11-09</date><risdate>2018</risdate><volume>2030</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In producing plastic products, injection moulding was well known for its manufacturing process. The quality of the plastic product depends on a certain processing parameter, and defects may occur when the processing parameters are wrongly set up. The purpose of this paper is to review the techniques related to the optimisation in injection moulding process of the shrinkage defect. One of the two categories of optimisation approach are non-classical approach (Artificial Intelligence (AI) techniques) is reviewed by focusing on the shrinkage defects in optimising the injection moulding process from year 2012 until year 2016 (2017 instead). The result of review indicates that Artificial Neural Network (ANN) categorized as non-classical approach AI approach is considered as the most used by researchers for optimisation process besides shows good performance for optimisation of the injection moulding process.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5066793</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2018, Vol.2030 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5066793 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Artificial intelligence Artificial neural networks Defects Injection molding Optimization Process parameters Rapid prototyping Shrinkage |
title | AI approaches: Recent studies on shrinkage optimisation in injection moulding process |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A16%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=AI%20approaches:%20Recent%20studies%20on%20shrinkage%20optimisation%20in%20injection%20moulding%20process&rft.btitle=AIP%20conference%20proceedings&rft.au=Hatta,%20N.%20M.&rft.date=2018-11-09&rft.volume=2030&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5066793&rft_dat=%3Cproquest_scita%3E2132496767%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p253t-4ffb887bf7e1355090606cd5615ebfdfe90eb8765ca93c1ae063ef3ea2ca80b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2132496767&rft_id=info:pmid/&rfr_iscdi=true |