Loading…

AI approaches: Recent studies on shrinkage optimisation in injection moulding process

In producing plastic products, injection moulding was well known for its manufacturing process. The quality of the plastic product depends on a certain processing parameter, and defects may occur when the processing parameters are wrongly set up. The purpose of this paper is to review the techniques...

Full description

Saved in:
Bibliographic Details
Main Authors: Hatta, N. M., Zain, A. M., Shayfull, Z., Sallehuddin, R.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2030
creator Hatta, N. M.
Zain, A. M.
Shayfull, Z.
Sallehuddin, R.
description In producing plastic products, injection moulding was well known for its manufacturing process. The quality of the plastic product depends on a certain processing parameter, and defects may occur when the processing parameters are wrongly set up. The purpose of this paper is to review the techniques related to the optimisation in injection moulding process of the shrinkage defect. One of the two categories of optimisation approach are non-classical approach (Artificial Intelligence (AI) techniques) is reviewed by focusing on the shrinkage defects in optimising the injection moulding process from year 2012 until year 2016 (2017 instead). The result of review indicates that Artificial Neural Network (ANN) categorized as non-classical approach AI approach is considered as the most used by researchers for optimisation process besides shows good performance for optimisation of the injection moulding process.
doi_str_mv 10.1063/1.5066793
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5066793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132496767</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-4ffb887bf7e1355090606cd5615ebfdfe90eb8765ca93c1ae063ef3ea2ca80b73</originalsourceid><addsrcrecordid>eNp9UNFKwzAUDaLgnD74BwHfhM6kaZLGtzGcDgaCOPAtpOnNlrm1tUkF_952G_gmXLjcy7nnnHsQuqVkQolgD3TCiRBSsTM0opzTRAoqztGIEJUlacY-LtFVCFtCUiVlPkKr6QKbpmlrYzcQHvEbWKgiDrErPQRcVzhsWl99mjXguol-74OJvl_7obZgD8O-7nalr9a4J7IQwjW6cGYX4ObUx2g1f3qfvSTL1-fFbLpMmpSzmGTOFXkuCyeBMs6JIoIIW3JBORSudKAIFLkU3BrFLDXQfwiOgUmtyUkh2RjdHXl73a8OQtTbumurXlKnlKWZElIMqPsjKlgfD-510_q9aX_0d91qqk-R6aZ0_4Ep0UPGfwfsF7O7b0E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2132496767</pqid></control><display><type>conference_proceeding</type><title>AI approaches: Recent studies on shrinkage optimisation in injection moulding process</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Hatta, N. M. ; Zain, A. M. ; Shayfull, Z. ; Sallehuddin, R.</creator><contributor>Tahir, Muhammad Faheem Bin Mohd ; Saad, Mohd Nasir Bin Mat ; Jamaludin, Liyana Binti ; Abdullah, Mohd Mustafa Al-Bakri ; Rahim, Shayfull Zamree Bin Abd ; Ghazli, Mohd Fathullah bin ; Ahmad, Romisuhani</contributor><creatorcontrib>Hatta, N. M. ; Zain, A. M. ; Shayfull, Z. ; Sallehuddin, R. ; Tahir, Muhammad Faheem Bin Mohd ; Saad, Mohd Nasir Bin Mat ; Jamaludin, Liyana Binti ; Abdullah, Mohd Mustafa Al-Bakri ; Rahim, Shayfull Zamree Bin Abd ; Ghazli, Mohd Fathullah bin ; Ahmad, Romisuhani</creatorcontrib><description>In producing plastic products, injection moulding was well known for its manufacturing process. The quality of the plastic product depends on a certain processing parameter, and defects may occur when the processing parameters are wrongly set up. The purpose of this paper is to review the techniques related to the optimisation in injection moulding process of the shrinkage defect. One of the two categories of optimisation approach are non-classical approach (Artificial Intelligence (AI) techniques) is reviewed by focusing on the shrinkage defects in optimising the injection moulding process from year 2012 until year 2016 (2017 instead). The result of review indicates that Artificial Neural Network (ANN) categorized as non-classical approach AI approach is considered as the most used by researchers for optimisation process besides shows good performance for optimisation of the injection moulding process.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5066793</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial intelligence ; Artificial neural networks ; Defects ; Injection molding ; Optimization ; Process parameters ; Rapid prototyping ; Shrinkage</subject><ispartof>AIP conference proceedings, 2018, Vol.2030 (1)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids></links><search><contributor>Tahir, Muhammad Faheem Bin Mohd</contributor><contributor>Saad, Mohd Nasir Bin Mat</contributor><contributor>Jamaludin, Liyana Binti</contributor><contributor>Abdullah, Mohd Mustafa Al-Bakri</contributor><contributor>Rahim, Shayfull Zamree Bin Abd</contributor><contributor>Ghazli, Mohd Fathullah bin</contributor><contributor>Ahmad, Romisuhani</contributor><creatorcontrib>Hatta, N. M.</creatorcontrib><creatorcontrib>Zain, A. M.</creatorcontrib><creatorcontrib>Shayfull, Z.</creatorcontrib><creatorcontrib>Sallehuddin, R.</creatorcontrib><title>AI approaches: Recent studies on shrinkage optimisation in injection moulding process</title><title>AIP conference proceedings</title><description>In producing plastic products, injection moulding was well known for its manufacturing process. The quality of the plastic product depends on a certain processing parameter, and defects may occur when the processing parameters are wrongly set up. The purpose of this paper is to review the techniques related to the optimisation in injection moulding process of the shrinkage defect. One of the two categories of optimisation approach are non-classical approach (Artificial Intelligence (AI) techniques) is reviewed by focusing on the shrinkage defects in optimising the injection moulding process from year 2012 until year 2016 (2017 instead). The result of review indicates that Artificial Neural Network (ANN) categorized as non-classical approach AI approach is considered as the most used by researchers for optimisation process besides shows good performance for optimisation of the injection moulding process.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Defects</subject><subject>Injection molding</subject><subject>Optimization</subject><subject>Process parameters</subject><subject>Rapid prototyping</subject><subject>Shrinkage</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9UNFKwzAUDaLgnD74BwHfhM6kaZLGtzGcDgaCOPAtpOnNlrm1tUkF_952G_gmXLjcy7nnnHsQuqVkQolgD3TCiRBSsTM0opzTRAoqztGIEJUlacY-LtFVCFtCUiVlPkKr6QKbpmlrYzcQHvEbWKgiDrErPQRcVzhsWl99mjXguol-74OJvl_7obZgD8O-7nalr9a4J7IQwjW6cGYX4ObUx2g1f3qfvSTL1-fFbLpMmpSzmGTOFXkuCyeBMs6JIoIIW3JBORSudKAIFLkU3BrFLDXQfwiOgUmtyUkh2RjdHXl73a8OQtTbumurXlKnlKWZElIMqPsjKlgfD-510_q9aX_0d91qqk-R6aZ0_4Ep0UPGfwfsF7O7b0E</recordid><startdate>20181109</startdate><enddate>20181109</enddate><creator>Hatta, N. M.</creator><creator>Zain, A. M.</creator><creator>Shayfull, Z.</creator><creator>Sallehuddin, R.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20181109</creationdate><title>AI approaches: Recent studies on shrinkage optimisation in injection moulding process</title><author>Hatta, N. M. ; Zain, A. M. ; Shayfull, Z. ; Sallehuddin, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-4ffb887bf7e1355090606cd5615ebfdfe90eb8765ca93c1ae063ef3ea2ca80b73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Defects</topic><topic>Injection molding</topic><topic>Optimization</topic><topic>Process parameters</topic><topic>Rapid prototyping</topic><topic>Shrinkage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hatta, N. M.</creatorcontrib><creatorcontrib>Zain, A. M.</creatorcontrib><creatorcontrib>Shayfull, Z.</creatorcontrib><creatorcontrib>Sallehuddin, R.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hatta, N. M.</au><au>Zain, A. M.</au><au>Shayfull, Z.</au><au>Sallehuddin, R.</au><au>Tahir, Muhammad Faheem Bin Mohd</au><au>Saad, Mohd Nasir Bin Mat</au><au>Jamaludin, Liyana Binti</au><au>Abdullah, Mohd Mustafa Al-Bakri</au><au>Rahim, Shayfull Zamree Bin Abd</au><au>Ghazli, Mohd Fathullah bin</au><au>Ahmad, Romisuhani</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>AI approaches: Recent studies on shrinkage optimisation in injection moulding process</atitle><btitle>AIP conference proceedings</btitle><date>2018-11-09</date><risdate>2018</risdate><volume>2030</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In producing plastic products, injection moulding was well known for its manufacturing process. The quality of the plastic product depends on a certain processing parameter, and defects may occur when the processing parameters are wrongly set up. The purpose of this paper is to review the techniques related to the optimisation in injection moulding process of the shrinkage defect. One of the two categories of optimisation approach are non-classical approach (Artificial Intelligence (AI) techniques) is reviewed by focusing on the shrinkage defects in optimising the injection moulding process from year 2012 until year 2016 (2017 instead). The result of review indicates that Artificial Neural Network (ANN) categorized as non-classical approach AI approach is considered as the most used by researchers for optimisation process besides shows good performance for optimisation of the injection moulding process.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5066793</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2018, Vol.2030 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_5066793
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Artificial intelligence
Artificial neural networks
Defects
Injection molding
Optimization
Process parameters
Rapid prototyping
Shrinkage
title AI approaches: Recent studies on shrinkage optimisation in injection moulding process
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A16%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=AI%20approaches:%20Recent%20studies%20on%20shrinkage%20optimisation%20in%20injection%20moulding%20process&rft.btitle=AIP%20conference%20proceedings&rft.au=Hatta,%20N.%20M.&rft.date=2018-11-09&rft.volume=2030&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5066793&rft_dat=%3Cproquest_scita%3E2132496767%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p253t-4ffb887bf7e1355090606cd5615ebfdfe90eb8765ca93c1ae063ef3ea2ca80b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2132496767&rft_id=info:pmid/&rfr_iscdi=true