Loading…

Structural, dielectric and low temperature magnetic response of Zn doped cobalt ferrite nanoparticles

The finely controlled nanostructured cubic spinel ferrites pave the way to synthesize nanomaterials with specific properties for particular applications. In this paper, we report sol-gel synthesis of Zn doped spinel Co1-xZnxFe2O4 (where x= 0.0, 0.1, 0.2, and 0.3) ferrite nanoparticles. X-ray diffrac...

Full description

Saved in:
Bibliographic Details
Published in:AIP advances 2019-05, Vol.9 (5), p.055202-055202-9
Main Authors: Batoo, Khalid Mujasam, Raslan, Emad H., Yang, Yujie, Adil, Syed Farooq, Khan, Mujeeb, Imran, Ahamad, Al-Douri, Yarub
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The finely controlled nanostructured cubic spinel ferrites pave the way to synthesize nanomaterials with specific properties for particular applications. In this paper, we report sol-gel synthesis of Zn doped spinel Co1-xZnxFe2O4 (where x= 0.0, 0.1, 0.2, and 0.3) ferrite nanoparticles. X-ray diffraction confirms the single phase cubic structure of nano ferrites with average particle size estimated between 55.38 to 32.87 nm and validated by Transmission electron microscopy (TEM) results (±1). The lattice parameter was found to increase with increasing Zn doping concentration. The samples exhibit normal dielectric behaviour of Maxwell-Wagner type of interfacial polarization that decreases with increasing frequency of the applied field. Temperature-dependent magnetic properties were investigated with the aid of physical property system. The hysteresis measurements of the samples show clearly enhancement in magnetic parameters as the temperature goes down to 20 K. Tuning of magnetic properties has been witnessed as a function of doping and temperature under the influence of externally applied magnetic field, has been discussed in this paper.
ISSN:2158-3226
2158-3226
DOI:10.1063/1.5078411