Loading…
Numerical investigation of solitary wave slamming on an oscillating wave surge converter
A solitary wave slamming on an Oscillating Wave Surge Converter (OWSC) is numerically investigated using a time-domain higher-order boundary element method with fully non-linear boundary conditions. A stretched coordinate is implemented to improve the numerical efficiency as long as the slamming pea...
Saved in:
Published in: | Physics of fluids (1994) 2019-03, Vol.31 (3) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A solitary wave slamming on an Oscillating Wave Surge Converter (OWSC) is numerically investigated using a time-domain higher-order boundary element method with fully non-linear boundary conditions. A stretched coordinate is implemented to improve the numerical efficiency as long as the slamming peak pressure occurs. The potential of the thin long jet is assumed to vary linearly, while the process of jet detaching is simulated through the domain decomposition method so that the local highly oscillatory pressure can be avoided. Two auxiliary functions are applied simultaneously to decouple the mutual dependence between the flap motion and the fluid flow. A unique mesh scheme is employed to simulate the free surface with strong deformation, through which the smallest meshes are distributed near the largest pressure gradient on the body and the mesh size increases gradually at a ratio. The validity of the present model to simulate the solitary wave and the slamming event is verified, respectively, based on which relatively comprehensive parameter studies are then performed. Through analyzing the flap’s motion states, the free surface profiles, and the pressure distributions, it is found that several unique phenomena and mechanisms exist in the solitary waves slamming on an OWSC. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/1.5085074 |