Loading…

Ranking approach based on incenter in triangle of centroids to solve type-1 and type-2 fuzzy transportation problem

Several methods have been introduced in literature to rank a fuzzy number for solving fuzzy transportation problem. But complexity and problem specific nature encourages the readers to work more on ranking techniques. In the present paper, incentre of centroids has been employed to convert trapezoid...

Full description

Saved in:
Bibliographic Details
Main Authors: Chhibber, Divya, Bisht, Dinesh C. S., Srivastava, Pankaj Kumar
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-175c121419c4d1f1011ca322076d692c50bf4beb6a26417fc7ce33681c88be823
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2061
creator Chhibber, Divya
Bisht, Dinesh C. S.
Srivastava, Pankaj Kumar
description Several methods have been introduced in literature to rank a fuzzy number for solving fuzzy transportation problem. But complexity and problem specific nature encourages the readers to work more on ranking techniques. In the present paper, incentre of centroids has been employed to convert trapezoidal fuzzy transportation problem of type 1 and type-2 both into crisp one, which is easy to approach and is applicable on existent problems of transportation. Once the crisp form is obtained from fuzzy, it is resolved by north-west corner technique to obtain the primary solution. Optimality is checked through modified distribution method. The merits of the proposed ranking technique over existing schemes are conferred by some examples. The acquired consequences show the efficiency of the suggested method.
doi_str_mv 10.1063/1.5086644
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5086644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2165877933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-175c121419c4d1f1011ca322076d692c50bf4beb6a26417fc7ce33681c88be823</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKcPfoOAb0JnbpIm7aMM_8FAEAXfQpqms7NLapINtk9vRwe--XQPl98953IQugYyAyLYHcxyUgjB-QmaQJ5DJgWIUzQhpOQZ5ezzHF3EuCKEllIWExTftPtu3RLrvg9emy9c6Whr7B1unbEu2TAInEKr3bKz2Df4sA2-rSNOHkffbS1Ou95mgLWrR0lxs9nvd8OZdrH3IenUDo5DQtXZ9SU6a3QX7dVxTtHH48P7_DlbvD69zO8XmaElSxnI3AAFDqXhNTRAAIxmlBIpalFSk5Oq4ZWthKaCg2yMNJYxUYApisoWlE3Rzeg75P5sbExq5TfBDZGKgsgLKUvGBup2pKJpxz9VH9q1DjsFRB1KVaCOpf4Hb334A1VfN-wXzwh4fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2165877933</pqid></control><display><type>conference_proceeding</type><title>Ranking approach based on incenter in triangle of centroids to solve type-1 and type-2 fuzzy transportation problem</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Chhibber, Divya ; Bisht, Dinesh C. S. ; Srivastava, Pankaj Kumar</creator><contributor>Chamola, Bhagwati Prasad ; Kumari, Pato</contributor><creatorcontrib>Chhibber, Divya ; Bisht, Dinesh C. S. ; Srivastava, Pankaj Kumar ; Chamola, Bhagwati Prasad ; Kumari, Pato</creatorcontrib><description>Several methods have been introduced in literature to rank a fuzzy number for solving fuzzy transportation problem. But complexity and problem specific nature encourages the readers to work more on ranking techniques. In the present paper, incentre of centroids has been employed to convert trapezoidal fuzzy transportation problem of type 1 and type-2 both into crisp one, which is easy to approach and is applicable on existent problems of transportation. Once the crisp form is obtained from fuzzy, it is resolved by north-west corner technique to obtain the primary solution. Optimality is checked through modified distribution method. The merits of the proposed ranking technique over existing schemes are conferred by some examples. The acquired consequences show the efficiency of the suggested method.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5086644</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Centroids ; Fuzzy systems ; Ranking ; Transportation problem</subject><ispartof>AIP conference proceedings, 2019, Vol.2061 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-175c121419c4d1f1011ca322076d692c50bf4beb6a26417fc7ce33681c88be823</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Chamola, Bhagwati Prasad</contributor><contributor>Kumari, Pato</contributor><creatorcontrib>Chhibber, Divya</creatorcontrib><creatorcontrib>Bisht, Dinesh C. S.</creatorcontrib><creatorcontrib>Srivastava, Pankaj Kumar</creatorcontrib><title>Ranking approach based on incenter in triangle of centroids to solve type-1 and type-2 fuzzy transportation problem</title><title>AIP conference proceedings</title><description>Several methods have been introduced in literature to rank a fuzzy number for solving fuzzy transportation problem. But complexity and problem specific nature encourages the readers to work more on ranking techniques. In the present paper, incentre of centroids has been employed to convert trapezoidal fuzzy transportation problem of type 1 and type-2 both into crisp one, which is easy to approach and is applicable on existent problems of transportation. Once the crisp form is obtained from fuzzy, it is resolved by north-west corner technique to obtain the primary solution. Optimality is checked through modified distribution method. The merits of the proposed ranking technique over existing schemes are conferred by some examples. The acquired consequences show the efficiency of the suggested method.</description><subject>Centroids</subject><subject>Fuzzy systems</subject><subject>Ranking</subject><subject>Transportation problem</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kF9LwzAUxYMoOKcPfoOAb0JnbpIm7aMM_8FAEAXfQpqms7NLapINtk9vRwe--XQPl98953IQugYyAyLYHcxyUgjB-QmaQJ5DJgWIUzQhpOQZ5ezzHF3EuCKEllIWExTftPtu3RLrvg9emy9c6Whr7B1unbEu2TAInEKr3bKz2Df4sA2-rSNOHkffbS1Ou95mgLWrR0lxs9nvd8OZdrH3IenUDo5DQtXZ9SU6a3QX7dVxTtHH48P7_DlbvD69zO8XmaElSxnI3AAFDqXhNTRAAIxmlBIpalFSk5Oq4ZWthKaCg2yMNJYxUYApisoWlE3Rzeg75P5sbExq5TfBDZGKgsgLKUvGBup2pKJpxz9VH9q1DjsFRB1KVaCOpf4Hb334A1VfN-wXzwh4fw</recordid><startdate>20190110</startdate><enddate>20190110</enddate><creator>Chhibber, Divya</creator><creator>Bisht, Dinesh C. S.</creator><creator>Srivastava, Pankaj Kumar</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190110</creationdate><title>Ranking approach based on incenter in triangle of centroids to solve type-1 and type-2 fuzzy transportation problem</title><author>Chhibber, Divya ; Bisht, Dinesh C. S. ; Srivastava, Pankaj Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-175c121419c4d1f1011ca322076d692c50bf4beb6a26417fc7ce33681c88be823</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Centroids</topic><topic>Fuzzy systems</topic><topic>Ranking</topic><topic>Transportation problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chhibber, Divya</creatorcontrib><creatorcontrib>Bisht, Dinesh C. S.</creatorcontrib><creatorcontrib>Srivastava, Pankaj Kumar</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chhibber, Divya</au><au>Bisht, Dinesh C. S.</au><au>Srivastava, Pankaj Kumar</au><au>Chamola, Bhagwati Prasad</au><au>Kumari, Pato</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Ranking approach based on incenter in triangle of centroids to solve type-1 and type-2 fuzzy transportation problem</atitle><btitle>AIP conference proceedings</btitle><date>2019-01-10</date><risdate>2019</risdate><volume>2061</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Several methods have been introduced in literature to rank a fuzzy number for solving fuzzy transportation problem. But complexity and problem specific nature encourages the readers to work more on ranking techniques. In the present paper, incentre of centroids has been employed to convert trapezoidal fuzzy transportation problem of type 1 and type-2 both into crisp one, which is easy to approach and is applicable on existent problems of transportation. Once the crisp form is obtained from fuzzy, it is resolved by north-west corner technique to obtain the primary solution. Optimality is checked through modified distribution method. The merits of the proposed ranking technique over existing schemes are conferred by some examples. The acquired consequences show the efficiency of the suggested method.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5086644</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2019, Vol.2061 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_5086644
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Centroids
Fuzzy systems
Ranking
Transportation problem
title Ranking approach based on incenter in triangle of centroids to solve type-1 and type-2 fuzzy transportation problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A43%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Ranking%20approach%20based%20on%20incenter%20in%20triangle%20of%20centroids%20to%20solve%20type-1%20and%20type-2%20fuzzy%20transportation%20problem&rft.btitle=AIP%20conference%20proceedings&rft.au=Chhibber,%20Divya&rft.date=2019-01-10&rft.volume=2061&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5086644&rft_dat=%3Cproquest_scita%3E2165877933%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-175c121419c4d1f1011ca322076d692c50bf4beb6a26417fc7ce33681c88be823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2165877933&rft_id=info:pmid/&rfr_iscdi=true