Loading…

Efficiency of numerical schemes for two dimensional Gray Scott model

In this article, efficient numerical schemes for the two dimensional Gray Scott model are presented. The Gray Scott model presents self-replicating patterns such as spots and strips. These pattern formulations are suitable interplay between diffusion and reactions in which the coupled partial differ...

Full description

Saved in:
Bibliographic Details
Published in:AIP advances 2019-10, Vol.9 (10), p.105023-105023-14
Main Authors: Hasnain, Shahid, Bashir, Shazia, Linker, Patrick, Saqib, Muhammad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-e69344de1590d2bd789212842a3ab3e459f79abe1818537f2e4e6ca30b0e4c573
cites cdi_FETCH-LOGICAL-c393t-e69344de1590d2bd789212842a3ab3e459f79abe1818537f2e4e6ca30b0e4c573
container_end_page 105023-14
container_issue 10
container_start_page 105023
container_title AIP advances
container_volume 9
creator Hasnain, Shahid
Bashir, Shazia
Linker, Patrick
Saqib, Muhammad
description In this article, efficient numerical schemes for the two dimensional Gray Scott model are presented. The Gray Scott model presents self-replicating patterns such as spots and strips. These pattern formulations are suitable interplay between diffusion and reactions in which the coupled partial differential system is solved by using three finite difference schemes to enhance accuracy while maintaining stability of the system. The stability analysis is performed on stationary points whereas the analytical solution is compared with the numerical schemes, such as Douglas implicit fourth and sixth order compact difference schemes. The later two schemes are implemented for first time on such a system for analyzing error residuals and system efficiency. It is predicted that the efficiency is upgraded by Thomas block tridiagonal solver, which leads to an excellent improvement in accuracy measured by L∞ norm.
doi_str_mv 10.1063/1.5095517
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5095517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2f5dafa592b34a8fad2da25e6c9db8f0</doaj_id><sourcerecordid>2307231742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-e69344de1590d2bd789212842a3ab3e459f79abe1818537f2e4e6ca30b0e4c573</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsNQe_AcLnhS25nN3c5Raa6HgQT2H2WSiKbtNTbZI_72rLeLJucyQPDzDvFl2ScmUkpLf0qkkSkpanWQjRmVdcMbK0z_zeTZJaU2GEoqSWoyy-7lz3njcmH0eXL7ZdRi9gTZP5h07TLkLMe8_Q259h5vkw2b4W0TY588m9H3eBYvtRXbmoE04OfZx9vowf5k9FqunxXJ2tyoMV7wvsFRcCItUKmJZY6taMcpqwYBDw1FI5SoFDdKa1pJXjqHA0gAnDUFhZMXH2fLgtQHWeht9B3GvA3j98xDim4bYe9OiZk5acCAVa7iA2oFlFpgcfMo2tSOD6-rg2sbwscPU63XYxeG6pBknFeO0Emygrg-UiSGliO53KyX6O3NN9THzgb05sMn4Hvohqn_gL4_nf2s</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307231742</pqid></control><display><type>article</type><title>Efficiency of numerical schemes for two dimensional Gray Scott model</title><source>AIP Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Hasnain, Shahid ; Bashir, Shazia ; Linker, Patrick ; Saqib, Muhammad</creator><creatorcontrib>Hasnain, Shahid ; Bashir, Shazia ; Linker, Patrick ; Saqib, Muhammad</creatorcontrib><description>In this article, efficient numerical schemes for the two dimensional Gray Scott model are presented. The Gray Scott model presents self-replicating patterns such as spots and strips. These pattern formulations are suitable interplay between diffusion and reactions in which the coupled partial differential system is solved by using three finite difference schemes to enhance accuracy while maintaining stability of the system. The stability analysis is performed on stationary points whereas the analytical solution is compared with the numerical schemes, such as Douglas implicit fourth and sixth order compact difference schemes. The later two schemes are implemented for first time on such a system for analyzing error residuals and system efficiency. It is predicted that the efficiency is upgraded by Thomas block tridiagonal solver, which leads to an excellent improvement in accuracy measured by L∞ norm.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.5095517</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Efficiency ; Error analysis ; Exact solutions ; Finite difference method ; Mathematical models ; Nonlinear programming ; Replicating ; Stability analysis ; Two dimensional models</subject><ispartof>AIP advances, 2019-10, Vol.9 (10), p.105023-105023-14</ispartof><rights>Author(s)</rights><rights>2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-e69344de1590d2bd789212842a3ab3e459f79abe1818537f2e4e6ca30b0e4c573</citedby><cites>FETCH-LOGICAL-c393t-e69344de1590d2bd789212842a3ab3e459f79abe1818537f2e4e6ca30b0e4c573</cites><orcidid>0000-0001-7904-1726</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/adv/article-lookup/doi/10.1063/1.5095517$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27890,27924,27925,76408</link.rule.ids></links><search><creatorcontrib>Hasnain, Shahid</creatorcontrib><creatorcontrib>Bashir, Shazia</creatorcontrib><creatorcontrib>Linker, Patrick</creatorcontrib><creatorcontrib>Saqib, Muhammad</creatorcontrib><title>Efficiency of numerical schemes for two dimensional Gray Scott model</title><title>AIP advances</title><description>In this article, efficient numerical schemes for the two dimensional Gray Scott model are presented. The Gray Scott model presents self-replicating patterns such as spots and strips. These pattern formulations are suitable interplay between diffusion and reactions in which the coupled partial differential system is solved by using three finite difference schemes to enhance accuracy while maintaining stability of the system. The stability analysis is performed on stationary points whereas the analytical solution is compared with the numerical schemes, such as Douglas implicit fourth and sixth order compact difference schemes. The later two schemes are implemented for first time on such a system for analyzing error residuals and system efficiency. It is predicted that the efficiency is upgraded by Thomas block tridiagonal solver, which leads to an excellent improvement in accuracy measured by L∞ norm.</description><subject>Efficiency</subject><subject>Error analysis</subject><subject>Exact solutions</subject><subject>Finite difference method</subject><subject>Mathematical models</subject><subject>Nonlinear programming</subject><subject>Replicating</subject><subject>Stability analysis</subject><subject>Two dimensional models</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>DOA</sourceid><recordid>eNp9kE1LAzEQhhdRsNQe_AcLnhS25nN3c5Raa6HgQT2H2WSiKbtNTbZI_72rLeLJucyQPDzDvFl2ScmUkpLf0qkkSkpanWQjRmVdcMbK0z_zeTZJaU2GEoqSWoyy-7lz3njcmH0eXL7ZdRi9gTZP5h07TLkLMe8_Q259h5vkw2b4W0TY588m9H3eBYvtRXbmoE04OfZx9vowf5k9FqunxXJ2tyoMV7wvsFRcCItUKmJZY6taMcpqwYBDw1FI5SoFDdKa1pJXjqHA0gAnDUFhZMXH2fLgtQHWeht9B3GvA3j98xDim4bYe9OiZk5acCAVa7iA2oFlFpgcfMo2tSOD6-rg2sbwscPU63XYxeG6pBknFeO0Emygrg-UiSGliO53KyX6O3NN9THzgb05sMn4Hvohqn_gL4_nf2s</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Hasnain, Shahid</creator><creator>Bashir, Shazia</creator><creator>Linker, Patrick</creator><creator>Saqib, Muhammad</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7904-1726</orcidid></search><sort><creationdate>201910</creationdate><title>Efficiency of numerical schemes for two dimensional Gray Scott model</title><author>Hasnain, Shahid ; Bashir, Shazia ; Linker, Patrick ; Saqib, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-e69344de1590d2bd789212842a3ab3e459f79abe1818537f2e4e6ca30b0e4c573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Efficiency</topic><topic>Error analysis</topic><topic>Exact solutions</topic><topic>Finite difference method</topic><topic>Mathematical models</topic><topic>Nonlinear programming</topic><topic>Replicating</topic><topic>Stability analysis</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasnain, Shahid</creatorcontrib><creatorcontrib>Bashir, Shazia</creatorcontrib><creatorcontrib>Linker, Patrick</creatorcontrib><creatorcontrib>Saqib, Muhammad</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasnain, Shahid</au><au>Bashir, Shazia</au><au>Linker, Patrick</au><au>Saqib, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficiency of numerical schemes for two dimensional Gray Scott model</atitle><jtitle>AIP advances</jtitle><date>2019-10</date><risdate>2019</risdate><volume>9</volume><issue>10</issue><spage>105023</spage><epage>105023-14</epage><pages>105023-105023-14</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>In this article, efficient numerical schemes for the two dimensional Gray Scott model are presented. The Gray Scott model presents self-replicating patterns such as spots and strips. These pattern formulations are suitable interplay between diffusion and reactions in which the coupled partial differential system is solved by using three finite difference schemes to enhance accuracy while maintaining stability of the system. The stability analysis is performed on stationary points whereas the analytical solution is compared with the numerical schemes, such as Douglas implicit fourth and sixth order compact difference schemes. The later two schemes are implemented for first time on such a system for analyzing error residuals and system efficiency. It is predicted that the efficiency is upgraded by Thomas block tridiagonal solver, which leads to an excellent improvement in accuracy measured by L∞ norm.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5095517</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7904-1726</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2019-10, Vol.9 (10), p.105023-105023-14
issn 2158-3226
2158-3226
language eng
recordid cdi_scitation_primary_10_1063_1_5095517
source AIP Open Access Journals; Free Full-Text Journals in Chemistry
subjects Efficiency
Error analysis
Exact solutions
Finite difference method
Mathematical models
Nonlinear programming
Replicating
Stability analysis
Two dimensional models
title Efficiency of numerical schemes for two dimensional Gray Scott model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A02%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficiency%20of%20numerical%20schemes%20for%20two%20dimensional%20Gray%20Scott%20model&rft.jtitle=AIP%20advances&rft.au=Hasnain,%20Shahid&rft.date=2019-10&rft.volume=9&rft.issue=10&rft.spage=105023&rft.epage=105023-14&rft.pages=105023-105023-14&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.5095517&rft_dat=%3Cproquest_scita%3E2307231742%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-e69344de1590d2bd789212842a3ab3e459f79abe1818537f2e4e6ca30b0e4c573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2307231742&rft_id=info:pmid/&rfr_iscdi=true