Loading…
Efficiency of numerical schemes for two dimensional Gray Scott model
In this article, efficient numerical schemes for the two dimensional Gray Scott model are presented. The Gray Scott model presents self-replicating patterns such as spots and strips. These pattern formulations are suitable interplay between diffusion and reactions in which the coupled partial differ...
Saved in:
Published in: | AIP advances 2019-10, Vol.9 (10), p.105023-105023-14 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c393t-e69344de1590d2bd789212842a3ab3e459f79abe1818537f2e4e6ca30b0e4c573 |
---|---|
cites | cdi_FETCH-LOGICAL-c393t-e69344de1590d2bd789212842a3ab3e459f79abe1818537f2e4e6ca30b0e4c573 |
container_end_page | 105023-14 |
container_issue | 10 |
container_start_page | 105023 |
container_title | AIP advances |
container_volume | 9 |
creator | Hasnain, Shahid Bashir, Shazia Linker, Patrick Saqib, Muhammad |
description | In this article, efficient numerical schemes for the two dimensional Gray Scott model are presented. The Gray Scott model presents self-replicating patterns such as spots and strips. These pattern formulations are suitable interplay between diffusion and reactions in which the coupled partial differential system is solved by using three finite difference schemes to enhance accuracy while maintaining stability of the system. The stability analysis is performed on stationary points whereas the analytical solution is compared with the numerical schemes, such as Douglas implicit fourth and sixth order compact difference schemes. The later two schemes are implemented for first time on such a system for analyzing error residuals and system efficiency. It is predicted that the efficiency is upgraded by Thomas block tridiagonal solver, which leads to an excellent improvement in accuracy measured by L∞ norm. |
doi_str_mv | 10.1063/1.5095517 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5095517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2f5dafa592b34a8fad2da25e6c9db8f0</doaj_id><sourcerecordid>2307231742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-e69344de1590d2bd789212842a3ab3e459f79abe1818537f2e4e6ca30b0e4c573</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsNQe_AcLnhS25nN3c5Raa6HgQT2H2WSiKbtNTbZI_72rLeLJucyQPDzDvFl2ScmUkpLf0qkkSkpanWQjRmVdcMbK0z_zeTZJaU2GEoqSWoyy-7lz3njcmH0eXL7ZdRi9gTZP5h07TLkLMe8_Q259h5vkw2b4W0TY588m9H3eBYvtRXbmoE04OfZx9vowf5k9FqunxXJ2tyoMV7wvsFRcCItUKmJZY6taMcpqwYBDw1FI5SoFDdKa1pJXjqHA0gAnDUFhZMXH2fLgtQHWeht9B3GvA3j98xDim4bYe9OiZk5acCAVa7iA2oFlFpgcfMo2tSOD6-rg2sbwscPU63XYxeG6pBknFeO0Emygrg-UiSGliO53KyX6O3NN9THzgb05sMn4Hvohqn_gL4_nf2s</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307231742</pqid></control><display><type>article</type><title>Efficiency of numerical schemes for two dimensional Gray Scott model</title><source>AIP Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Hasnain, Shahid ; Bashir, Shazia ; Linker, Patrick ; Saqib, Muhammad</creator><creatorcontrib>Hasnain, Shahid ; Bashir, Shazia ; Linker, Patrick ; Saqib, Muhammad</creatorcontrib><description>In this article, efficient numerical schemes for the two dimensional Gray Scott model are presented. The Gray Scott model presents self-replicating patterns such as spots and strips. These pattern formulations are suitable interplay between diffusion and reactions in which the coupled partial differential system is solved by using three finite difference schemes to enhance accuracy while maintaining stability of the system. The stability analysis is performed on stationary points whereas the analytical solution is compared with the numerical schemes, such as Douglas implicit fourth and sixth order compact difference schemes. The later two schemes are implemented for first time on such a system for analyzing error residuals and system efficiency. It is predicted that the efficiency is upgraded by Thomas block tridiagonal solver, which leads to an excellent improvement in accuracy measured by L∞ norm.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.5095517</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Efficiency ; Error analysis ; Exact solutions ; Finite difference method ; Mathematical models ; Nonlinear programming ; Replicating ; Stability analysis ; Two dimensional models</subject><ispartof>AIP advances, 2019-10, Vol.9 (10), p.105023-105023-14</ispartof><rights>Author(s)</rights><rights>2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-e69344de1590d2bd789212842a3ab3e459f79abe1818537f2e4e6ca30b0e4c573</citedby><cites>FETCH-LOGICAL-c393t-e69344de1590d2bd789212842a3ab3e459f79abe1818537f2e4e6ca30b0e4c573</cites><orcidid>0000-0001-7904-1726</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/adv/article-lookup/doi/10.1063/1.5095517$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27890,27924,27925,76408</link.rule.ids></links><search><creatorcontrib>Hasnain, Shahid</creatorcontrib><creatorcontrib>Bashir, Shazia</creatorcontrib><creatorcontrib>Linker, Patrick</creatorcontrib><creatorcontrib>Saqib, Muhammad</creatorcontrib><title>Efficiency of numerical schemes for two dimensional Gray Scott model</title><title>AIP advances</title><description>In this article, efficient numerical schemes for the two dimensional Gray Scott model are presented. The Gray Scott model presents self-replicating patterns such as spots and strips. These pattern formulations are suitable interplay between diffusion and reactions in which the coupled partial differential system is solved by using three finite difference schemes to enhance accuracy while maintaining stability of the system. The stability analysis is performed on stationary points whereas the analytical solution is compared with the numerical schemes, such as Douglas implicit fourth and sixth order compact difference schemes. The later two schemes are implemented for first time on such a system for analyzing error residuals and system efficiency. It is predicted that the efficiency is upgraded by Thomas block tridiagonal solver, which leads to an excellent improvement in accuracy measured by L∞ norm.</description><subject>Efficiency</subject><subject>Error analysis</subject><subject>Exact solutions</subject><subject>Finite difference method</subject><subject>Mathematical models</subject><subject>Nonlinear programming</subject><subject>Replicating</subject><subject>Stability analysis</subject><subject>Two dimensional models</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>DOA</sourceid><recordid>eNp9kE1LAzEQhhdRsNQe_AcLnhS25nN3c5Raa6HgQT2H2WSiKbtNTbZI_72rLeLJucyQPDzDvFl2ScmUkpLf0qkkSkpanWQjRmVdcMbK0z_zeTZJaU2GEoqSWoyy-7lz3njcmH0eXL7ZdRi9gTZP5h07TLkLMe8_Q259h5vkw2b4W0TY588m9H3eBYvtRXbmoE04OfZx9vowf5k9FqunxXJ2tyoMV7wvsFRcCItUKmJZY6taMcpqwYBDw1FI5SoFDdKa1pJXjqHA0gAnDUFhZMXH2fLgtQHWeht9B3GvA3j98xDim4bYe9OiZk5acCAVa7iA2oFlFpgcfMo2tSOD6-rg2sbwscPU63XYxeG6pBknFeO0Emygrg-UiSGliO53KyX6O3NN9THzgb05sMn4Hvohqn_gL4_nf2s</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Hasnain, Shahid</creator><creator>Bashir, Shazia</creator><creator>Linker, Patrick</creator><creator>Saqib, Muhammad</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7904-1726</orcidid></search><sort><creationdate>201910</creationdate><title>Efficiency of numerical schemes for two dimensional Gray Scott model</title><author>Hasnain, Shahid ; Bashir, Shazia ; Linker, Patrick ; Saqib, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-e69344de1590d2bd789212842a3ab3e459f79abe1818537f2e4e6ca30b0e4c573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Efficiency</topic><topic>Error analysis</topic><topic>Exact solutions</topic><topic>Finite difference method</topic><topic>Mathematical models</topic><topic>Nonlinear programming</topic><topic>Replicating</topic><topic>Stability analysis</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasnain, Shahid</creatorcontrib><creatorcontrib>Bashir, Shazia</creatorcontrib><creatorcontrib>Linker, Patrick</creatorcontrib><creatorcontrib>Saqib, Muhammad</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasnain, Shahid</au><au>Bashir, Shazia</au><au>Linker, Patrick</au><au>Saqib, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficiency of numerical schemes for two dimensional Gray Scott model</atitle><jtitle>AIP advances</jtitle><date>2019-10</date><risdate>2019</risdate><volume>9</volume><issue>10</issue><spage>105023</spage><epage>105023-14</epage><pages>105023-105023-14</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>In this article, efficient numerical schemes for the two dimensional Gray Scott model are presented. The Gray Scott model presents self-replicating patterns such as spots and strips. These pattern formulations are suitable interplay between diffusion and reactions in which the coupled partial differential system is solved by using three finite difference schemes to enhance accuracy while maintaining stability of the system. The stability analysis is performed on stationary points whereas the analytical solution is compared with the numerical schemes, such as Douglas implicit fourth and sixth order compact difference schemes. The later two schemes are implemented for first time on such a system for analyzing error residuals and system efficiency. It is predicted that the efficiency is upgraded by Thomas block tridiagonal solver, which leads to an excellent improvement in accuracy measured by L∞ norm.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5095517</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7904-1726</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3226 |
ispartof | AIP advances, 2019-10, Vol.9 (10), p.105023-105023-14 |
issn | 2158-3226 2158-3226 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5095517 |
source | AIP Open Access Journals; Free Full-Text Journals in Chemistry |
subjects | Efficiency Error analysis Exact solutions Finite difference method Mathematical models Nonlinear programming Replicating Stability analysis Two dimensional models |
title | Efficiency of numerical schemes for two dimensional Gray Scott model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A02%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficiency%20of%20numerical%20schemes%20for%20two%20dimensional%20Gray%20Scott%20model&rft.jtitle=AIP%20advances&rft.au=Hasnain,%20Shahid&rft.date=2019-10&rft.volume=9&rft.issue=10&rft.spage=105023&rft.epage=105023-14&rft.pages=105023-105023-14&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.5095517&rft_dat=%3Cproquest_scita%3E2307231742%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-e69344de1590d2bd789212842a3ab3e459f79abe1818537f2e4e6ca30b0e4c573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2307231742&rft_id=info:pmid/&rfr_iscdi=true |