Loading…

Ferroelectricity in YO1.5-HfO2 films around 1 μm in thickness

Ferroelectricity has been demonstrated in polycrystalline 7%Y-doped HfO2 (YHO7) films with thicknesses ranging from 10 to 930 nm, which were grown on (111)Pt/TiOx/SiO2/(001)Si substrates by pulsed laser deposition at room temperature and subsequent annealing at 1000 °C. The X-ray diffraction pattern...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2019-07, Vol.115 (3)
Main Authors: Mimura, Takanori, Shimizu, Takao, Funakubo, Hiroshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ferroelectricity has been demonstrated in polycrystalline 7%Y-doped HfO2 (YHO7) films with thicknesses ranging from 10 to 930 nm, which were grown on (111)Pt/TiOx/SiO2/(001)Si substrates by pulsed laser deposition at room temperature and subsequent annealing at 1000 °C. The X-ray diffraction pattern suggested that the major crystal phase consists of orthorhombic/tetragonal phases with a small amount of monoclinic phase even for the 930-nm-thick film despite its thickness. Moreover, the hysteresis loops associated with the ferroelectric orthorhombic phase were clearly observed for all samples including even the 930-nm-thick film. The remnant polarization (Pr) and the coercive field (Ec) are 14–17 μC/cm2 and 1300–1600 kV/cm, respectively, at max applied electric fields of ∼4000 kV/cm for all YHO7 films within the present study. These results indicate that the ferroelectric structure and properties of YHO7 films are insensitive to the film thickness.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.5097880