Loading…

ReaxFF reactive force field for molecular dynamics simulations of liquid Cu and Zr metals

We develop a ReaxFF reactive force field used for the molecular dynamics simulations of thermophysical properties of liquid Cu and Zr metals. The ReaxFF parameters are optimized by fitting to the first-principles density-functional calculations on the equations of state for bulk crystal structures a...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2019-09, Vol.151 (9), p.094503-094503
Main Authors: Huang, H. S., Ai, L. Q., van Duin, A. C. T., Chen, M., Lü, Y. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-f3a72a4fdd847be077ac27793c883d0b6706d3931ee15c56bd1bd2dab7a613e23
cites cdi_FETCH-LOGICAL-c383t-f3a72a4fdd847be077ac27793c883d0b6706d3931ee15c56bd1bd2dab7a613e23
container_end_page 094503
container_issue 9
container_start_page 094503
container_title The Journal of chemical physics
container_volume 151
creator Huang, H. S.
Ai, L. Q.
van Duin, A. C. T.
Chen, M.
Lü, Y. J.
description We develop a ReaxFF reactive force field used for the molecular dynamics simulations of thermophysical properties of liquid Cu and Zr metals. The ReaxFF parameters are optimized by fitting to the first-principles density-functional calculations on the equations of state for bulk crystal structures and surface energies. To validate the force field, we compare the ReaxFF results with those from experiments and embedded-atom-method (EAM) potentials. We demonstrate that the present ReaxFF force field well represents structural characteristics and diffusion behaviors of elemental Cu and Zr up to high-temperature liquid regions. It reasonably reproduces the thermodynamic processes associated with crystal-liquid interface. In particular, the equilibrium melting temperatures show better agreement with experimental measurements than the results from EAM potentials. The ReaxFF reactive force field method exhibits a good transferability to the nonreactive processes of liquid systems.
doi_str_mv 10.1063/1.5112794
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5112794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2286944079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-f3a72a4fdd847be077ac27793c883d0b6706d3931ee15c56bd1bd2dab7a613e23</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgipvTg19AAl5U6MyfNmmOMpwKA0H0oJeSJilktM2WtMN9ezM3FQS95A3hl4eXB4BTjMYYMXqNxxnGhIt0DwwxykXCmUD7YIgQwYlgiA3AUQhzhBDmJD0EA4pTQVDGhuD1ycj36RR6I1VnVwZWzqt4WlPrzR02rjaqr6WHet3KxqoAg23iQ2ddG6CrYG2XvdVw0kPZavgWv5hO1uEYHFRxmJPdHIGX6e3z5D6ZPd49TG5miaI57ZKKSk5kWmmdp7w0iHOpCOeCqjynGpWMI6apoNgYnKmMlRqXmmhZcskwNYSOwMU2d-HdsjehKxoblKlr2RrXh4KQnIk0RTFyBM5_0bnrfRu326iMMoIJi-pyq5R3IXhTFQtvG-nXBUbFpu8CF7u-oz3bJfZlY_S3_Co4gqstCMp2n539m_YnXjn_A4uFrugHFRKVZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285362126</pqid></control><display><type>article</type><title>ReaxFF reactive force field for molecular dynamics simulations of liquid Cu and Zr metals</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Huang, H. S. ; Ai, L. Q. ; van Duin, A. C. T. ; Chen, M. ; Lü, Y. J.</creator><creatorcontrib>Huang, H. S. ; Ai, L. Q. ; van Duin, A. C. T. ; Chen, M. ; Lü, Y. J.</creatorcontrib><description>We develop a ReaxFF reactive force field used for the molecular dynamics simulations of thermophysical properties of liquid Cu and Zr metals. The ReaxFF parameters are optimized by fitting to the first-principles density-functional calculations on the equations of state for bulk crystal structures and surface energies. To validate the force field, we compare the ReaxFF results with those from experiments and embedded-atom-method (EAM) potentials. We demonstrate that the present ReaxFF force field well represents structural characteristics and diffusion behaviors of elemental Cu and Zr up to high-temperature liquid regions. It reasonably reproduces the thermodynamic processes associated with crystal-liquid interface. In particular, the equilibrium melting temperatures show better agreement with experimental measurements than the results from EAM potentials. The ReaxFF reactive force field method exhibits a good transferability to the nonreactive processes of liquid systems.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5112794</identifier><identifier>PMID: 31492056</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Bulk density ; Copper ; Crystal structure ; Embedded atom method ; Equations of state ; First principles ; High temperature ; Molecular dynamics ; Thermophysical models ; Thermophysical properties ; Zirconium</subject><ispartof>The Journal of chemical physics, 2019-09, Vol.151 (9), p.094503-094503</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-f3a72a4fdd847be077ac27793c883d0b6706d3931ee15c56bd1bd2dab7a613e23</citedby><cites>FETCH-LOGICAL-c383t-f3a72a4fdd847be077ac27793c883d0b6706d3931ee15c56bd1bd2dab7a613e23</cites><orcidid>0000-0002-8900-8855 ; 0000-0002-1000-0894 ; 0000-0001-5912-3978 ; 0000000210000894 ; 0000000289008855 ; 0000000159123978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5112794$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,778,780,791,27901,27902,76125</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31492056$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, H. S.</creatorcontrib><creatorcontrib>Ai, L. Q.</creatorcontrib><creatorcontrib>van Duin, A. C. T.</creatorcontrib><creatorcontrib>Chen, M.</creatorcontrib><creatorcontrib>Lü, Y. J.</creatorcontrib><title>ReaxFF reactive force field for molecular dynamics simulations of liquid Cu and Zr metals</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We develop a ReaxFF reactive force field used for the molecular dynamics simulations of thermophysical properties of liquid Cu and Zr metals. The ReaxFF parameters are optimized by fitting to the first-principles density-functional calculations on the equations of state for bulk crystal structures and surface energies. To validate the force field, we compare the ReaxFF results with those from experiments and embedded-atom-method (EAM) potentials. We demonstrate that the present ReaxFF force field well represents structural characteristics and diffusion behaviors of elemental Cu and Zr up to high-temperature liquid regions. It reasonably reproduces the thermodynamic processes associated with crystal-liquid interface. In particular, the equilibrium melting temperatures show better agreement with experimental measurements than the results from EAM potentials. The ReaxFF reactive force field method exhibits a good transferability to the nonreactive processes of liquid systems.</description><subject>Bulk density</subject><subject>Copper</subject><subject>Crystal structure</subject><subject>Embedded atom method</subject><subject>Equations of state</subject><subject>First principles</subject><subject>High temperature</subject><subject>Molecular dynamics</subject><subject>Thermophysical models</subject><subject>Thermophysical properties</subject><subject>Zirconium</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYBvAgipvTg19AAl5U6MyfNmmOMpwKA0H0oJeSJilktM2WtMN9ezM3FQS95A3hl4eXB4BTjMYYMXqNxxnGhIt0DwwxykXCmUD7YIgQwYlgiA3AUQhzhBDmJD0EA4pTQVDGhuD1ycj36RR6I1VnVwZWzqt4WlPrzR02rjaqr6WHet3KxqoAg23iQ2ddG6CrYG2XvdVw0kPZavgWv5hO1uEYHFRxmJPdHIGX6e3z5D6ZPd49TG5miaI57ZKKSk5kWmmdp7w0iHOpCOeCqjynGpWMI6apoNgYnKmMlRqXmmhZcskwNYSOwMU2d-HdsjehKxoblKlr2RrXh4KQnIk0RTFyBM5_0bnrfRu326iMMoIJi-pyq5R3IXhTFQtvG-nXBUbFpu8CF7u-oz3bJfZlY_S3_Co4gqstCMp2n539m_YnXjn_A4uFrugHFRKVZw</recordid><startdate>20190907</startdate><enddate>20190907</enddate><creator>Huang, H. S.</creator><creator>Ai, L. Q.</creator><creator>van Duin, A. C. T.</creator><creator>Chen, M.</creator><creator>Lü, Y. J.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8900-8855</orcidid><orcidid>https://orcid.org/0000-0002-1000-0894</orcidid><orcidid>https://orcid.org/0000-0001-5912-3978</orcidid><orcidid>https://orcid.org/0000000210000894</orcidid><orcidid>https://orcid.org/0000000289008855</orcidid><orcidid>https://orcid.org/0000000159123978</orcidid></search><sort><creationdate>20190907</creationdate><title>ReaxFF reactive force field for molecular dynamics simulations of liquid Cu and Zr metals</title><author>Huang, H. S. ; Ai, L. Q. ; van Duin, A. C. T. ; Chen, M. ; Lü, Y. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-f3a72a4fdd847be077ac27793c883d0b6706d3931ee15c56bd1bd2dab7a613e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bulk density</topic><topic>Copper</topic><topic>Crystal structure</topic><topic>Embedded atom method</topic><topic>Equations of state</topic><topic>First principles</topic><topic>High temperature</topic><topic>Molecular dynamics</topic><topic>Thermophysical models</topic><topic>Thermophysical properties</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, H. S.</creatorcontrib><creatorcontrib>Ai, L. Q.</creatorcontrib><creatorcontrib>van Duin, A. C. T.</creatorcontrib><creatorcontrib>Chen, M.</creatorcontrib><creatorcontrib>Lü, Y. J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, H. S.</au><au>Ai, L. Q.</au><au>van Duin, A. C. T.</au><au>Chen, M.</au><au>Lü, Y. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ReaxFF reactive force field for molecular dynamics simulations of liquid Cu and Zr metals</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2019-09-07</date><risdate>2019</risdate><volume>151</volume><issue>9</issue><spage>094503</spage><epage>094503</epage><pages>094503-094503</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We develop a ReaxFF reactive force field used for the molecular dynamics simulations of thermophysical properties of liquid Cu and Zr metals. The ReaxFF parameters are optimized by fitting to the first-principles density-functional calculations on the equations of state for bulk crystal structures and surface energies. To validate the force field, we compare the ReaxFF results with those from experiments and embedded-atom-method (EAM) potentials. We demonstrate that the present ReaxFF force field well represents structural characteristics and diffusion behaviors of elemental Cu and Zr up to high-temperature liquid regions. It reasonably reproduces the thermodynamic processes associated with crystal-liquid interface. In particular, the equilibrium melting temperatures show better agreement with experimental measurements than the results from EAM potentials. The ReaxFF reactive force field method exhibits a good transferability to the nonreactive processes of liquid systems.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>31492056</pmid><doi>10.1063/1.5112794</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8900-8855</orcidid><orcidid>https://orcid.org/0000-0002-1000-0894</orcidid><orcidid>https://orcid.org/0000-0001-5912-3978</orcidid><orcidid>https://orcid.org/0000000210000894</orcidid><orcidid>https://orcid.org/0000000289008855</orcidid><orcidid>https://orcid.org/0000000159123978</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2019-09, Vol.151 (9), p.094503-094503
issn 0021-9606
1089-7690
language eng
recordid cdi_scitation_primary_10_1063_1_5112794
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Bulk density
Copper
Crystal structure
Embedded atom method
Equations of state
First principles
High temperature
Molecular dynamics
Thermophysical models
Thermophysical properties
Zirconium
title ReaxFF reactive force field for molecular dynamics simulations of liquid Cu and Zr metals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A13%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ReaxFF%20reactive%20force%20field%20for%20molecular%20dynamics%20simulations%20of%20liquid%20Cu%20and%20Zr%20metals&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Huang,%20H.%20S.&rft.date=2019-09-07&rft.volume=151&rft.issue=9&rft.spage=094503&rft.epage=094503&rft.pages=094503-094503&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5112794&rft_dat=%3Cproquest_scita%3E2286944079%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-f3a72a4fdd847be077ac27793c883d0b6706d3931ee15c56bd1bd2dab7a613e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2285362126&rft_id=info:pmid/31492056&rfr_iscdi=true