Loading…
ReaxFF reactive force field for molecular dynamics simulations of liquid Cu and Zr metals
We develop a ReaxFF reactive force field used for the molecular dynamics simulations of thermophysical properties of liquid Cu and Zr metals. The ReaxFF parameters are optimized by fitting to the first-principles density-functional calculations on the equations of state for bulk crystal structures a...
Saved in:
Published in: | The Journal of chemical physics 2019-09, Vol.151 (9), p.094503-094503 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-f3a72a4fdd847be077ac27793c883d0b6706d3931ee15c56bd1bd2dab7a613e23 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-f3a72a4fdd847be077ac27793c883d0b6706d3931ee15c56bd1bd2dab7a613e23 |
container_end_page | 094503 |
container_issue | 9 |
container_start_page | 094503 |
container_title | The Journal of chemical physics |
container_volume | 151 |
creator | Huang, H. S. Ai, L. Q. van Duin, A. C. T. Chen, M. Lü, Y. J. |
description | We develop a ReaxFF reactive force field used for the molecular dynamics simulations of thermophysical properties of liquid Cu and Zr metals. The ReaxFF parameters are optimized by fitting to the first-principles density-functional calculations on the equations of state for bulk crystal structures and surface energies. To validate the force field, we compare the ReaxFF results with those from experiments and embedded-atom-method (EAM) potentials. We demonstrate that the present ReaxFF force field well represents structural characteristics and diffusion behaviors of elemental Cu and Zr up to high-temperature liquid regions. It reasonably reproduces the thermodynamic processes associated with crystal-liquid interface. In particular, the equilibrium melting temperatures show better agreement with experimental measurements than the results from EAM potentials. The ReaxFF reactive force field method exhibits a good transferability to the nonreactive processes of liquid systems. |
doi_str_mv | 10.1063/1.5112794 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5112794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2286944079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-f3a72a4fdd847be077ac27793c883d0b6706d3931ee15c56bd1bd2dab7a613e23</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgipvTg19AAl5U6MyfNmmOMpwKA0H0oJeSJilktM2WtMN9ezM3FQS95A3hl4eXB4BTjMYYMXqNxxnGhIt0DwwxykXCmUD7YIgQwYlgiA3AUQhzhBDmJD0EA4pTQVDGhuD1ycj36RR6I1VnVwZWzqt4WlPrzR02rjaqr6WHet3KxqoAg23iQ2ddG6CrYG2XvdVw0kPZavgWv5hO1uEYHFRxmJPdHIGX6e3z5D6ZPd49TG5miaI57ZKKSk5kWmmdp7w0iHOpCOeCqjynGpWMI6apoNgYnKmMlRqXmmhZcskwNYSOwMU2d-HdsjehKxoblKlr2RrXh4KQnIk0RTFyBM5_0bnrfRu326iMMoIJi-pyq5R3IXhTFQtvG-nXBUbFpu8CF7u-oz3bJfZlY_S3_Co4gqstCMp2n539m_YnXjn_A4uFrugHFRKVZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285362126</pqid></control><display><type>article</type><title>ReaxFF reactive force field for molecular dynamics simulations of liquid Cu and Zr metals</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Huang, H. S. ; Ai, L. Q. ; van Duin, A. C. T. ; Chen, M. ; Lü, Y. J.</creator><creatorcontrib>Huang, H. S. ; Ai, L. Q. ; van Duin, A. C. T. ; Chen, M. ; Lü, Y. J.</creatorcontrib><description>We develop a ReaxFF reactive force field used for the molecular dynamics simulations of thermophysical properties of liquid Cu and Zr metals. The ReaxFF parameters are optimized by fitting to the first-principles density-functional calculations on the equations of state for bulk crystal structures and surface energies. To validate the force field, we compare the ReaxFF results with those from experiments and embedded-atom-method (EAM) potentials. We demonstrate that the present ReaxFF force field well represents structural characteristics and diffusion behaviors of elemental Cu and Zr up to high-temperature liquid regions. It reasonably reproduces the thermodynamic processes associated with crystal-liquid interface. In particular, the equilibrium melting temperatures show better agreement with experimental measurements than the results from EAM potentials. The ReaxFF reactive force field method exhibits a good transferability to the nonreactive processes of liquid systems.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5112794</identifier><identifier>PMID: 31492056</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Bulk density ; Copper ; Crystal structure ; Embedded atom method ; Equations of state ; First principles ; High temperature ; Molecular dynamics ; Thermophysical models ; Thermophysical properties ; Zirconium</subject><ispartof>The Journal of chemical physics, 2019-09, Vol.151 (9), p.094503-094503</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-f3a72a4fdd847be077ac27793c883d0b6706d3931ee15c56bd1bd2dab7a613e23</citedby><cites>FETCH-LOGICAL-c383t-f3a72a4fdd847be077ac27793c883d0b6706d3931ee15c56bd1bd2dab7a613e23</cites><orcidid>0000-0002-8900-8855 ; 0000-0002-1000-0894 ; 0000-0001-5912-3978 ; 0000000210000894 ; 0000000289008855 ; 0000000159123978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5112794$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,778,780,791,27901,27902,76125</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31492056$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, H. S.</creatorcontrib><creatorcontrib>Ai, L. Q.</creatorcontrib><creatorcontrib>van Duin, A. C. T.</creatorcontrib><creatorcontrib>Chen, M.</creatorcontrib><creatorcontrib>Lü, Y. J.</creatorcontrib><title>ReaxFF reactive force field for molecular dynamics simulations of liquid Cu and Zr metals</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We develop a ReaxFF reactive force field used for the molecular dynamics simulations of thermophysical properties of liquid Cu and Zr metals. The ReaxFF parameters are optimized by fitting to the first-principles density-functional calculations on the equations of state for bulk crystal structures and surface energies. To validate the force field, we compare the ReaxFF results with those from experiments and embedded-atom-method (EAM) potentials. We demonstrate that the present ReaxFF force field well represents structural characteristics and diffusion behaviors of elemental Cu and Zr up to high-temperature liquid regions. It reasonably reproduces the thermodynamic processes associated with crystal-liquid interface. In particular, the equilibrium melting temperatures show better agreement with experimental measurements than the results from EAM potentials. The ReaxFF reactive force field method exhibits a good transferability to the nonreactive processes of liquid systems.</description><subject>Bulk density</subject><subject>Copper</subject><subject>Crystal structure</subject><subject>Embedded atom method</subject><subject>Equations of state</subject><subject>First principles</subject><subject>High temperature</subject><subject>Molecular dynamics</subject><subject>Thermophysical models</subject><subject>Thermophysical properties</subject><subject>Zirconium</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYBvAgipvTg19AAl5U6MyfNmmOMpwKA0H0oJeSJilktM2WtMN9ezM3FQS95A3hl4eXB4BTjMYYMXqNxxnGhIt0DwwxykXCmUD7YIgQwYlgiA3AUQhzhBDmJD0EA4pTQVDGhuD1ycj36RR6I1VnVwZWzqt4WlPrzR02rjaqr6WHet3KxqoAg23iQ2ddG6CrYG2XvdVw0kPZavgWv5hO1uEYHFRxmJPdHIGX6e3z5D6ZPd49TG5miaI57ZKKSk5kWmmdp7w0iHOpCOeCqjynGpWMI6apoNgYnKmMlRqXmmhZcskwNYSOwMU2d-HdsjehKxoblKlr2RrXh4KQnIk0RTFyBM5_0bnrfRu326iMMoIJi-pyq5R3IXhTFQtvG-nXBUbFpu8CF7u-oz3bJfZlY_S3_Co4gqstCMp2n539m_YnXjn_A4uFrugHFRKVZw</recordid><startdate>20190907</startdate><enddate>20190907</enddate><creator>Huang, H. S.</creator><creator>Ai, L. Q.</creator><creator>van Duin, A. C. T.</creator><creator>Chen, M.</creator><creator>Lü, Y. J.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8900-8855</orcidid><orcidid>https://orcid.org/0000-0002-1000-0894</orcidid><orcidid>https://orcid.org/0000-0001-5912-3978</orcidid><orcidid>https://orcid.org/0000000210000894</orcidid><orcidid>https://orcid.org/0000000289008855</orcidid><orcidid>https://orcid.org/0000000159123978</orcidid></search><sort><creationdate>20190907</creationdate><title>ReaxFF reactive force field for molecular dynamics simulations of liquid Cu and Zr metals</title><author>Huang, H. S. ; Ai, L. Q. ; van Duin, A. C. T. ; Chen, M. ; Lü, Y. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-f3a72a4fdd847be077ac27793c883d0b6706d3931ee15c56bd1bd2dab7a613e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bulk density</topic><topic>Copper</topic><topic>Crystal structure</topic><topic>Embedded atom method</topic><topic>Equations of state</topic><topic>First principles</topic><topic>High temperature</topic><topic>Molecular dynamics</topic><topic>Thermophysical models</topic><topic>Thermophysical properties</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, H. S.</creatorcontrib><creatorcontrib>Ai, L. Q.</creatorcontrib><creatorcontrib>van Duin, A. C. T.</creatorcontrib><creatorcontrib>Chen, M.</creatorcontrib><creatorcontrib>Lü, Y. J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, H. S.</au><au>Ai, L. Q.</au><au>van Duin, A. C. T.</au><au>Chen, M.</au><au>Lü, Y. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ReaxFF reactive force field for molecular dynamics simulations of liquid Cu and Zr metals</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2019-09-07</date><risdate>2019</risdate><volume>151</volume><issue>9</issue><spage>094503</spage><epage>094503</epage><pages>094503-094503</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We develop a ReaxFF reactive force field used for the molecular dynamics simulations of thermophysical properties of liquid Cu and Zr metals. The ReaxFF parameters are optimized by fitting to the first-principles density-functional calculations on the equations of state for bulk crystal structures and surface energies. To validate the force field, we compare the ReaxFF results with those from experiments and embedded-atom-method (EAM) potentials. We demonstrate that the present ReaxFF force field well represents structural characteristics and diffusion behaviors of elemental Cu and Zr up to high-temperature liquid regions. It reasonably reproduces the thermodynamic processes associated with crystal-liquid interface. In particular, the equilibrium melting temperatures show better agreement with experimental measurements than the results from EAM potentials. The ReaxFF reactive force field method exhibits a good transferability to the nonreactive processes of liquid systems.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>31492056</pmid><doi>10.1063/1.5112794</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8900-8855</orcidid><orcidid>https://orcid.org/0000-0002-1000-0894</orcidid><orcidid>https://orcid.org/0000-0001-5912-3978</orcidid><orcidid>https://orcid.org/0000000210000894</orcidid><orcidid>https://orcid.org/0000000289008855</orcidid><orcidid>https://orcid.org/0000000159123978</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2019-09, Vol.151 (9), p.094503-094503 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5112794 |
source | American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Bulk density Copper Crystal structure Embedded atom method Equations of state First principles High temperature Molecular dynamics Thermophysical models Thermophysical properties Zirconium |
title | ReaxFF reactive force field for molecular dynamics simulations of liquid Cu and Zr metals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A13%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ReaxFF%20reactive%20force%20field%20for%20molecular%20dynamics%20simulations%20of%20liquid%20Cu%20and%20Zr%20metals&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Huang,%20H.%20S.&rft.date=2019-09-07&rft.volume=151&rft.issue=9&rft.spage=094503&rft.epage=094503&rft.pages=094503-094503&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5112794&rft_dat=%3Cproquest_scita%3E2286944079%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-f3a72a4fdd847be077ac27793c883d0b6706d3931ee15c56bd1bd2dab7a613e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2285362126&rft_id=info:pmid/31492056&rfr_iscdi=true |