Loading…

How proteins’ negative cooperativity emerges from entropic optimisation of versatile collective fluctuations

The fact that allostery, a nonlocal signaling between distant binding sites, can arise mainly from the entropy balance of collective thermal modes, without conformational changes, is by now well known. However, the propensity to generate negative cooperativity is still unclear. Starting from an elas...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2019-12, Vol.151 (21), p.215101-215101
Main Authors: von der Heydt, Alice C., McLeish, Tom C. B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The fact that allostery, a nonlocal signaling between distant binding sites, can arise mainly from the entropy balance of collective thermal modes, without conformational changes, is by now well known. However, the propensity to generate negative cooperativity is still unclear. Starting from an elastic-network picture of small protein complexes, in which effector binding is modeled by locally altering interaction strengths in lieu of adding a node-spring pair, we elucidate mechanisms particularly for such negative cooperativity. The approach via a few coupled harmonic oscillators with internal elastic strengths allows us to trace individual eigenmodes, their frequencies, and their statistical weights through successive bindings. We find that the alteration of the oscillators’ couplings is paramount to covering both signs of allostery. Binding-modified couplings create a rich set of eigenmodes individually for each binding state, modes inaccessible to an ensemble of noninteracting units. The associated shifts of collective-mode frequencies, nonuniform with respect to modes and binding states, result in an enhanced optimizability, reflected by a subtle phase map of allosteric behaviors.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.5123741