Loading…

Robust iterative methods: Convergence and applications to proton computed tomography

Robust methods, such as Tikhonov regularization and Bounded data uncertainty, have been used extensively in relatively small problems involving dense matrices for many decades, but have not been used in large-scale iterative methods for image reconstruction in particle imaging until recently. In thi...

Full description

Saved in:
Bibliographic Details
Published in:AIP conference proceedings 2019-01, Vol.2160 (1)
Main Authors: Karbasi, Paniz, Schubert, Keith E., Schultze, Blake, Bashkirov, Vladimir, Johnson, Robert P., Schulte, Reinhard W.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title AIP conference proceedings
container_volume 2160
creator Karbasi, Paniz
Schubert, Keith E.
Schultze, Blake
Bashkirov, Vladimir
Johnson, Robert P.
Schulte, Reinhard W.
description Robust methods, such as Tikhonov regularization and Bounded data uncertainty, have been used extensively in relatively small problems involving dense matrices for many decades, but have not been used in large-scale iterative methods for image reconstruction in particle imaging until recently. In this case, robust methods may allow more accurate reconstruction of images in the presence of errors of both the energy measurement of the protons and ions but also in the estimated path taken by the proton or ion through the object. Robust systems may also be used when entire blocks of data are missing, or in low-dose reconstructions using a very small number of particles without substantial loss of image quality. In this contribution, we demonstrate that robust methods show great promise in proton/ion (particle) computed tomography (pCT), and, for the first time, that they can be proven to converge. Thus, the convergence of robust methods as well as benefits for reconstruction in uncertain systems is shown to constitute the main advantage for pCT reconstruction.
doi_str_mv 10.1063/1.5127700
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5127700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2299884781</sourcerecordid><originalsourceid>FETCH-LOGICAL-p365t-5eeb4ba8d86afaf83a11ef5820a0b3e3f33825dd1504b1e0f431332993edb5333</originalsourceid><addsrcrecordid>eNpdkU9r3DAQxUVpaLZpD_0CxdBLKTjVaCxL7iWUpX8CgUJJoTch2-NdB1tyJXkh375qsw1NTgMzPx5v3mPsFfBz4DW-h3MJQinOn7ANSAmlqqF-yjacN1UpKvx5yp7HeMO5aJTSz9gpKpCIstqw6---XWMqxkTBpvFAxUxp7_v4odh6d6CwI9dRYV1f2GWZxi5D3sUi-WIJPnlXdH5e1kR9Xs1-F-yyv33BTgY7RXp5nGfsx-dP19uv5dW3L5fbj1flgrVMpSRqq9bqXtd2sINGC0CD1IJb3iLhgKiF7HuQvGqB-FAhIIqmQerb7B_P2MWd7rK2M_UduRTsZJYwzjbcGm9H8_Dixr3Z-YMBDlI1SmeFt0eF4H-tFJOZx9jRNFlHfo1GaAABlZYqo28eoTd-DS7_Z0T2pHWlNGTq9f-W7r38SzwD7-6A2I3pb5j3DHDzp04D5lgn_gaHgJCX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299884781</pqid></control><display><type>article</type><title>Robust iterative methods: Convergence and applications to proton computed tomography</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Karbasi, Paniz ; Schubert, Keith E. ; Schultze, Blake ; Bashkirov, Vladimir ; Johnson, Robert P. ; Schulte, Reinhard W.</creator><contributor>Antolak, Arlyn ; Glass, Gary ; Wang, Yongqiang ; McDaniel, Floyd ; Doyle, Barney</contributor><creatorcontrib>Karbasi, Paniz ; Schubert, Keith E. ; Schultze, Blake ; Bashkirov, Vladimir ; Johnson, Robert P. ; Schulte, Reinhard W. ; Antolak, Arlyn ; Glass, Gary ; Wang, Yongqiang ; McDaniel, Floyd ; Doyle, Barney</creatorcontrib><description>Robust methods, such as Tikhonov regularization and Bounded data uncertainty, have been used extensively in relatively small problems involving dense matrices for many decades, but have not been used in large-scale iterative methods for image reconstruction in particle imaging until recently. In this case, robust methods may allow more accurate reconstruction of images in the presence of errors of both the energy measurement of the protons and ions but also in the estimated path taken by the proton or ion through the object. Robust systems may also be used when entire blocks of data are missing, or in low-dose reconstructions using a very small number of particles without substantial loss of image quality. In this contribution, we demonstrate that robust methods show great promise in proton/ion (particle) computed tomography (pCT), and, for the first time, that they can be proven to converge. Thus, the convergence of robust methods as well as benefits for reconstruction in uncertain systems is shown to constitute the main advantage for pCT reconstruction.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5127700</identifier><identifier>PMID: 37153354</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Computation ; Computed tomography ; Convergence ; Energy measurement ; Image quality ; Image reconstruction ; Iterative methods ; Protons ; Regularization ; Robustness</subject><ispartof>AIP conference proceedings, 2019-01, Vol.2160 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,780,784,789,790,885,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37153354$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Antolak, Arlyn</contributor><contributor>Glass, Gary</contributor><contributor>Wang, Yongqiang</contributor><contributor>McDaniel, Floyd</contributor><contributor>Doyle, Barney</contributor><creatorcontrib>Karbasi, Paniz</creatorcontrib><creatorcontrib>Schubert, Keith E.</creatorcontrib><creatorcontrib>Schultze, Blake</creatorcontrib><creatorcontrib>Bashkirov, Vladimir</creatorcontrib><creatorcontrib>Johnson, Robert P.</creatorcontrib><creatorcontrib>Schulte, Reinhard W.</creatorcontrib><title>Robust iterative methods: Convergence and applications to proton computed tomography</title><title>AIP conference proceedings</title><addtitle>AIP Conf Proc</addtitle><description>Robust methods, such as Tikhonov regularization and Bounded data uncertainty, have been used extensively in relatively small problems involving dense matrices for many decades, but have not been used in large-scale iterative methods for image reconstruction in particle imaging until recently. In this case, robust methods may allow more accurate reconstruction of images in the presence of errors of both the energy measurement of the protons and ions but also in the estimated path taken by the proton or ion through the object. Robust systems may also be used when entire blocks of data are missing, or in low-dose reconstructions using a very small number of particles without substantial loss of image quality. In this contribution, we demonstrate that robust methods show great promise in proton/ion (particle) computed tomography (pCT), and, for the first time, that they can be proven to converge. Thus, the convergence of robust methods as well as benefits for reconstruction in uncertain systems is shown to constitute the main advantage for pCT reconstruction.</description><subject>Computation</subject><subject>Computed tomography</subject><subject>Convergence</subject><subject>Energy measurement</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Iterative methods</subject><subject>Protons</subject><subject>Regularization</subject><subject>Robustness</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkU9r3DAQxUVpaLZpD_0CxdBLKTjVaCxL7iWUpX8CgUJJoTch2-NdB1tyJXkh375qsw1NTgMzPx5v3mPsFfBz4DW-h3MJQinOn7ANSAmlqqF-yjacN1UpKvx5yp7HeMO5aJTSz9gpKpCIstqw6---XWMqxkTBpvFAxUxp7_v4odh6d6CwI9dRYV1f2GWZxi5D3sUi-WIJPnlXdH5e1kR9Xs1-F-yyv33BTgY7RXp5nGfsx-dP19uv5dW3L5fbj1flgrVMpSRqq9bqXtd2sINGC0CD1IJb3iLhgKiF7HuQvGqB-FAhIIqmQerb7B_P2MWd7rK2M_UduRTsZJYwzjbcGm9H8_Dixr3Z-YMBDlI1SmeFt0eF4H-tFJOZx9jRNFlHfo1GaAABlZYqo28eoTd-DS7_Z0T2pHWlNGTq9f-W7r38SzwD7-6A2I3pb5j3DHDzp04D5lgn_gaHgJCX</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Karbasi, Paniz</creator><creator>Schubert, Keith E.</creator><creator>Schultze, Blake</creator><creator>Bashkirov, Vladimir</creator><creator>Johnson, Robert P.</creator><creator>Schulte, Reinhard W.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190101</creationdate><title>Robust iterative methods: Convergence and applications to proton computed tomography</title><author>Karbasi, Paniz ; Schubert, Keith E. ; Schultze, Blake ; Bashkirov, Vladimir ; Johnson, Robert P. ; Schulte, Reinhard W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p365t-5eeb4ba8d86afaf83a11ef5820a0b3e3f33825dd1504b1e0f431332993edb5333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computation</topic><topic>Computed tomography</topic><topic>Convergence</topic><topic>Energy measurement</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Iterative methods</topic><topic>Protons</topic><topic>Regularization</topic><topic>Robustness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karbasi, Paniz</creatorcontrib><creatorcontrib>Schubert, Keith E.</creatorcontrib><creatorcontrib>Schultze, Blake</creatorcontrib><creatorcontrib>Bashkirov, Vladimir</creatorcontrib><creatorcontrib>Johnson, Robert P.</creatorcontrib><creatorcontrib>Schulte, Reinhard W.</creatorcontrib><collection>PubMed</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AIP conference proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karbasi, Paniz</au><au>Schubert, Keith E.</au><au>Schultze, Blake</au><au>Bashkirov, Vladimir</au><au>Johnson, Robert P.</au><au>Schulte, Reinhard W.</au><au>Antolak, Arlyn</au><au>Glass, Gary</au><au>Wang, Yongqiang</au><au>McDaniel, Floyd</au><au>Doyle, Barney</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust iterative methods: Convergence and applications to proton computed tomography</atitle><jtitle>AIP conference proceedings</jtitle><addtitle>AIP Conf Proc</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>2160</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Robust methods, such as Tikhonov regularization and Bounded data uncertainty, have been used extensively in relatively small problems involving dense matrices for many decades, but have not been used in large-scale iterative methods for image reconstruction in particle imaging until recently. In this case, robust methods may allow more accurate reconstruction of images in the presence of errors of both the energy measurement of the protons and ions but also in the estimated path taken by the proton or ion through the object. Robust systems may also be used when entire blocks of data are missing, or in low-dose reconstructions using a very small number of particles without substantial loss of image quality. In this contribution, we demonstrate that robust methods show great promise in proton/ion (particle) computed tomography (pCT), and, for the first time, that they can be proven to converge. Thus, the convergence of robust methods as well as benefits for reconstruction in uncertain systems is shown to constitute the main advantage for pCT reconstruction.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>37153354</pmid><doi>10.1063/1.5127700</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2019-01, Vol.2160 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_5127700
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Computation
Computed tomography
Convergence
Energy measurement
Image quality
Image reconstruction
Iterative methods
Protons
Regularization
Robustness
title Robust iterative methods: Convergence and applications to proton computed tomography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A34%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20iterative%20methods:%20Convergence%20and%20applications%20to%20proton%20computed%20tomography&rft.jtitle=AIP%20conference%20proceedings&rft.au=Karbasi,%20Paniz&rft.date=2019-01-01&rft.volume=2160&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5127700&rft_dat=%3Cproquest_scita%3E2299884781%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p365t-5eeb4ba8d86afaf83a11ef5820a0b3e3f33825dd1504b1e0f431332993edb5333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2299884781&rft_id=info:pmid/37153354&rfr_iscdi=true