Loading…
Robust iterative methods: Convergence and applications to proton computed tomography
Robust methods, such as Tikhonov regularization and Bounded data uncertainty, have been used extensively in relatively small problems involving dense matrices for many decades, but have not been used in large-scale iterative methods for image reconstruction in particle imaging until recently. In thi...
Saved in:
Published in: | AIP conference proceedings 2019-01, Vol.2160 (1) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | AIP conference proceedings |
container_volume | 2160 |
creator | Karbasi, Paniz Schubert, Keith E. Schultze, Blake Bashkirov, Vladimir Johnson, Robert P. Schulte, Reinhard W. |
description | Robust methods, such as Tikhonov regularization and Bounded data uncertainty, have been used extensively in relatively small problems involving dense matrices for many decades, but have not been used in large-scale iterative methods for image reconstruction in particle imaging until recently. In this case, robust methods may allow more accurate reconstruction of images in the presence of errors of both the energy measurement of the protons and ions but also in the estimated path taken by the proton or ion through the object. Robust systems may also be used when entire blocks of data are missing, or in low-dose reconstructions using a very small number of particles without substantial loss of image quality. In this contribution, we demonstrate that robust methods show great promise in proton/ion (particle) computed tomography (pCT), and, for the first time, that they can be proven to converge. Thus, the convergence of robust methods as well as benefits for reconstruction in uncertain systems is shown to constitute the main advantage for pCT reconstruction. |
doi_str_mv | 10.1063/1.5127700 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5127700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2299884781</sourcerecordid><originalsourceid>FETCH-LOGICAL-p365t-5eeb4ba8d86afaf83a11ef5820a0b3e3f33825dd1504b1e0f431332993edb5333</originalsourceid><addsrcrecordid>eNpdkU9r3DAQxUVpaLZpD_0CxdBLKTjVaCxL7iWUpX8CgUJJoTch2-NdB1tyJXkh375qsw1NTgMzPx5v3mPsFfBz4DW-h3MJQinOn7ANSAmlqqF-yjacN1UpKvx5yp7HeMO5aJTSz9gpKpCIstqw6---XWMqxkTBpvFAxUxp7_v4odh6d6CwI9dRYV1f2GWZxi5D3sUi-WIJPnlXdH5e1kR9Xs1-F-yyv33BTgY7RXp5nGfsx-dP19uv5dW3L5fbj1flgrVMpSRqq9bqXtd2sINGC0CD1IJb3iLhgKiF7HuQvGqB-FAhIIqmQerb7B_P2MWd7rK2M_UduRTsZJYwzjbcGm9H8_Dixr3Z-YMBDlI1SmeFt0eF4H-tFJOZx9jRNFlHfo1GaAABlZYqo28eoTd-DS7_Z0T2pHWlNGTq9f-W7r38SzwD7-6A2I3pb5j3DHDzp04D5lgn_gaHgJCX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299884781</pqid></control><display><type>article</type><title>Robust iterative methods: Convergence and applications to proton computed tomography</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Karbasi, Paniz ; Schubert, Keith E. ; Schultze, Blake ; Bashkirov, Vladimir ; Johnson, Robert P. ; Schulte, Reinhard W.</creator><contributor>Antolak, Arlyn ; Glass, Gary ; Wang, Yongqiang ; McDaniel, Floyd ; Doyle, Barney</contributor><creatorcontrib>Karbasi, Paniz ; Schubert, Keith E. ; Schultze, Blake ; Bashkirov, Vladimir ; Johnson, Robert P. ; Schulte, Reinhard W. ; Antolak, Arlyn ; Glass, Gary ; Wang, Yongqiang ; McDaniel, Floyd ; Doyle, Barney</creatorcontrib><description>Robust methods, such as Tikhonov regularization and Bounded data uncertainty, have been used extensively in relatively small problems involving dense matrices for many decades, but have not been used in large-scale iterative methods for image reconstruction in particle imaging until recently. In this case, robust methods may allow more accurate reconstruction of images in the presence of errors of both the energy measurement of the protons and ions but also in the estimated path taken by the proton or ion through the object. Robust systems may also be used when entire blocks of data are missing, or in low-dose reconstructions using a very small number of particles without substantial loss of image quality. In this contribution, we demonstrate that robust methods show great promise in proton/ion (particle) computed tomography (pCT), and, for the first time, that they can be proven to converge. Thus, the convergence of robust methods as well as benefits for reconstruction in uncertain systems is shown to constitute the main advantage for pCT reconstruction.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5127700</identifier><identifier>PMID: 37153354</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Computation ; Computed tomography ; Convergence ; Energy measurement ; Image quality ; Image reconstruction ; Iterative methods ; Protons ; Regularization ; Robustness</subject><ispartof>AIP conference proceedings, 2019-01, Vol.2160 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,780,784,789,790,885,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37153354$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Antolak, Arlyn</contributor><contributor>Glass, Gary</contributor><contributor>Wang, Yongqiang</contributor><contributor>McDaniel, Floyd</contributor><contributor>Doyle, Barney</contributor><creatorcontrib>Karbasi, Paniz</creatorcontrib><creatorcontrib>Schubert, Keith E.</creatorcontrib><creatorcontrib>Schultze, Blake</creatorcontrib><creatorcontrib>Bashkirov, Vladimir</creatorcontrib><creatorcontrib>Johnson, Robert P.</creatorcontrib><creatorcontrib>Schulte, Reinhard W.</creatorcontrib><title>Robust iterative methods: Convergence and applications to proton computed tomography</title><title>AIP conference proceedings</title><addtitle>AIP Conf Proc</addtitle><description>Robust methods, such as Tikhonov regularization and Bounded data uncertainty, have been used extensively in relatively small problems involving dense matrices for many decades, but have not been used in large-scale iterative methods for image reconstruction in particle imaging until recently. In this case, robust methods may allow more accurate reconstruction of images in the presence of errors of both the energy measurement of the protons and ions but also in the estimated path taken by the proton or ion through the object. Robust systems may also be used when entire blocks of data are missing, or in low-dose reconstructions using a very small number of particles without substantial loss of image quality. In this contribution, we demonstrate that robust methods show great promise in proton/ion (particle) computed tomography (pCT), and, for the first time, that they can be proven to converge. Thus, the convergence of robust methods as well as benefits for reconstruction in uncertain systems is shown to constitute the main advantage for pCT reconstruction.</description><subject>Computation</subject><subject>Computed tomography</subject><subject>Convergence</subject><subject>Energy measurement</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Iterative methods</subject><subject>Protons</subject><subject>Regularization</subject><subject>Robustness</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkU9r3DAQxUVpaLZpD_0CxdBLKTjVaCxL7iWUpX8CgUJJoTch2-NdB1tyJXkh375qsw1NTgMzPx5v3mPsFfBz4DW-h3MJQinOn7ANSAmlqqF-yjacN1UpKvx5yp7HeMO5aJTSz9gpKpCIstqw6---XWMqxkTBpvFAxUxp7_v4odh6d6CwI9dRYV1f2GWZxi5D3sUi-WIJPnlXdH5e1kR9Xs1-F-yyv33BTgY7RXp5nGfsx-dP19uv5dW3L5fbj1flgrVMpSRqq9bqXtd2sINGC0CD1IJb3iLhgKiF7HuQvGqB-FAhIIqmQerb7B_P2MWd7rK2M_UduRTsZJYwzjbcGm9H8_Dixr3Z-YMBDlI1SmeFt0eF4H-tFJOZx9jRNFlHfo1GaAABlZYqo28eoTd-DS7_Z0T2pHWlNGTq9f-W7r38SzwD7-6A2I3pb5j3DHDzp04D5lgn_gaHgJCX</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Karbasi, Paniz</creator><creator>Schubert, Keith E.</creator><creator>Schultze, Blake</creator><creator>Bashkirov, Vladimir</creator><creator>Johnson, Robert P.</creator><creator>Schulte, Reinhard W.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190101</creationdate><title>Robust iterative methods: Convergence and applications to proton computed tomography</title><author>Karbasi, Paniz ; Schubert, Keith E. ; Schultze, Blake ; Bashkirov, Vladimir ; Johnson, Robert P. ; Schulte, Reinhard W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p365t-5eeb4ba8d86afaf83a11ef5820a0b3e3f33825dd1504b1e0f431332993edb5333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computation</topic><topic>Computed tomography</topic><topic>Convergence</topic><topic>Energy measurement</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Iterative methods</topic><topic>Protons</topic><topic>Regularization</topic><topic>Robustness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karbasi, Paniz</creatorcontrib><creatorcontrib>Schubert, Keith E.</creatorcontrib><creatorcontrib>Schultze, Blake</creatorcontrib><creatorcontrib>Bashkirov, Vladimir</creatorcontrib><creatorcontrib>Johnson, Robert P.</creatorcontrib><creatorcontrib>Schulte, Reinhard W.</creatorcontrib><collection>PubMed</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AIP conference proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karbasi, Paniz</au><au>Schubert, Keith E.</au><au>Schultze, Blake</au><au>Bashkirov, Vladimir</au><au>Johnson, Robert P.</au><au>Schulte, Reinhard W.</au><au>Antolak, Arlyn</au><au>Glass, Gary</au><au>Wang, Yongqiang</au><au>McDaniel, Floyd</au><au>Doyle, Barney</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust iterative methods: Convergence and applications to proton computed tomography</atitle><jtitle>AIP conference proceedings</jtitle><addtitle>AIP Conf Proc</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>2160</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Robust methods, such as Tikhonov regularization and Bounded data uncertainty, have been used extensively in relatively small problems involving dense matrices for many decades, but have not been used in large-scale iterative methods for image reconstruction in particle imaging until recently. In this case, robust methods may allow more accurate reconstruction of images in the presence of errors of both the energy measurement of the protons and ions but also in the estimated path taken by the proton or ion through the object. Robust systems may also be used when entire blocks of data are missing, or in low-dose reconstructions using a very small number of particles without substantial loss of image quality. In this contribution, we demonstrate that robust methods show great promise in proton/ion (particle) computed tomography (pCT), and, for the first time, that they can be proven to converge. Thus, the convergence of robust methods as well as benefits for reconstruction in uncertain systems is shown to constitute the main advantage for pCT reconstruction.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>37153354</pmid><doi>10.1063/1.5127700</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2019-01, Vol.2160 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5127700 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Computation Computed tomography Convergence Energy measurement Image quality Image reconstruction Iterative methods Protons Regularization Robustness |
title | Robust iterative methods: Convergence and applications to proton computed tomography |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A34%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20iterative%20methods:%20Convergence%20and%20applications%20to%20proton%20computed%20tomography&rft.jtitle=AIP%20conference%20proceedings&rft.au=Karbasi,%20Paniz&rft.date=2019-01-01&rft.volume=2160&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5127700&rft_dat=%3Cproquest_scita%3E2299884781%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p365t-5eeb4ba8d86afaf83a11ef5820a0b3e3f33825dd1504b1e0f431332993edb5333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2299884781&rft_id=info:pmid/37153354&rfr_iscdi=true |