Loading…

Monitoring the growth dynamics of colloidal gold-silver core-shell nanoparticles using in situ second harmonic generation and extinction spectroscopy

The growth dynamics of gold-silver core-shell (Au@Ag) nanoparticles are studied using in situ time-dependent second harmonic generation (SHG) and extinction spectroscopy to investigate the nanoparticle shell formation. The silver shell is grown by reduction of silver cations onto a 14 nm gold core u...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2019-12, Vol.151 (22), p.224701-224701
Main Authors: Ranasinghe, Jeewan C., Dikkumbura, Asela S., Hamal, Prakash, Chen, Min, Khoury, Rami A., Smith, Holden T., Lopata, Kenneth, Haber, Louis H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c445t-3158bf4916e5f698053d10b9e9907c01cf400f39da8399a5e6fed7348f7cdcdf3
cites cdi_FETCH-LOGICAL-c445t-3158bf4916e5f698053d10b9e9907c01cf400f39da8399a5e6fed7348f7cdcdf3
container_end_page 224701
container_issue 22
container_start_page 224701
container_title The Journal of chemical physics
container_volume 151
creator Ranasinghe, Jeewan C.
Dikkumbura, Asela S.
Hamal, Prakash
Chen, Min
Khoury, Rami A.
Smith, Holden T.
Lopata, Kenneth
Haber, Louis H.
description The growth dynamics of gold-silver core-shell (Au@Ag) nanoparticles are studied using in situ time-dependent second harmonic generation (SHG) and extinction spectroscopy to investigate the nanoparticle shell formation. The silver shell is grown by reduction of silver cations onto a 14 nm gold core using ascorbic acid in colloidal aqueous solution under varying reaction concentrations producing Au@Ag nanoparticles of final sizes ranging from 51 to 78 nm in diameter. The in situ extinction spectra show a rapid increase in intensity on the timescale of 5–6 s with blue shifting and narrowing of the plasmonic peak during the silver shell formation. The in situ SHG signals show an abrupt rise at early times of the reaction, followed by a time-dependent biexponential decrease, where the faster SHG lifetime corresponds to the timescale of the shell growth, and where the slower SHG lifetime is attributed to changes in the nanoparticle surface charge density. A large enhancement in the SHG signal at early stages of the reaction is caused by plasmonic hot spots due to the nanoparticle surface morphology, which becomes smoother as the reaction proceeds. The final extinction spectra are compared to finite-difference time-domain (FDTD) calculations, showing general agreement with experiment, where the plasmon peak red shifts and increases in spectral width as the silver shell thickness increases. These in situ SHG and extinction spectroscopy results, combined with FDTD calculations, help characterize the complicated processes involved in colloidal nanoparticle shell formation in real time for developing potential plasmon-enhanced nanomaterial applications.
doi_str_mv 10.1063/1.5127941
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5127941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322935918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-3158bf4916e5f698053d10b9e9907c01cf400f39da8399a5e6fed7348f7cdcdf3</originalsourceid><addsrcrecordid>eNp9kc2OFCEUhYnROG3rwhcwRDejSY1QVEGxNJPxJxnjRteEhksXk2oogRrtB_F9padbTUx0Re7Nl8O55yD0lJILSjh7TS962grZ0XtoRckgG8EluY9WhLS0kZzwM_Qo5xtCCBVt9xCdMTowwTldoR8fY_AlJh-2uIyAtyl-KyO2-6B33mQcHTZxmqK3esLbONkm--kWUt0maPII04SDDnHWqXgzQcZLPmj5gLMvC85gYrB41GlXPzJ4CwGSLj4GrOsevhcfzN2YZzAlxWzivH-MHjg9ZXhyetfoy9urz5fvm-tP7z5cvrluTNf1pWG0Hzauk5RD77gcSM8sJRsJUhJhCDWuI8QxafXApNQ9cAdWsG5wwlhjHVuj50fdmItX2fgCZqyGQ7WiaC_EMHQVOj9Cc4pfF8hF7Xw29XAdIC5ZtawVbGCU9xV98Rd6E5cU6gkHqpWslzX5NXp5pEw9Nydwak5-p9NeUaIOhSqqToVW9tlJcdnswP4mfzVYgVdH4OD-Ltj_qv0Tvo3pD6jmGs5PjZK5fg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322935918</pqid></control><display><type>article</type><title>Monitoring the growth dynamics of colloidal gold-silver core-shell nanoparticles using in situ second harmonic generation and extinction spectroscopy</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Ranasinghe, Jeewan C. ; Dikkumbura, Asela S. ; Hamal, Prakash ; Chen, Min ; Khoury, Rami A. ; Smith, Holden T. ; Lopata, Kenneth ; Haber, Louis H.</creator><creatorcontrib>Ranasinghe, Jeewan C. ; Dikkumbura, Asela S. ; Hamal, Prakash ; Chen, Min ; Khoury, Rami A. ; Smith, Holden T. ; Lopata, Kenneth ; Haber, Louis H.</creatorcontrib><description>The growth dynamics of gold-silver core-shell (Au@Ag) nanoparticles are studied using in situ time-dependent second harmonic generation (SHG) and extinction spectroscopy to investigate the nanoparticle shell formation. The silver shell is grown by reduction of silver cations onto a 14 nm gold core using ascorbic acid in colloidal aqueous solution under varying reaction concentrations producing Au@Ag nanoparticles of final sizes ranging from 51 to 78 nm in diameter. The in situ extinction spectra show a rapid increase in intensity on the timescale of 5–6 s with blue shifting and narrowing of the plasmonic peak during the silver shell formation. The in situ SHG signals show an abrupt rise at early times of the reaction, followed by a time-dependent biexponential decrease, where the faster SHG lifetime corresponds to the timescale of the shell growth, and where the slower SHG lifetime is attributed to changes in the nanoparticle surface charge density. A large enhancement in the SHG signal at early stages of the reaction is caused by plasmonic hot spots due to the nanoparticle surface morphology, which becomes smoother as the reaction proceeds. The final extinction spectra are compared to finite-difference time-domain (FDTD) calculations, showing general agreement with experiment, where the plasmon peak red shifts and increases in spectral width as the silver shell thickness increases. These in situ SHG and extinction spectroscopy results, combined with FDTD calculations, help characterize the complicated processes involved in colloidal nanoparticle shell formation in real time for developing potential plasmon-enhanced nanomaterial applications.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5127941</identifier><identifier>PMID: 31837661</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Aqueous solutions ; Ascorbic acid ; Charge density ; Colloiding ; Core-shell particles ; Diameters ; Extinction ; Finite difference time domain method ; Gold ; Mathematical analysis ; Morphology ; Nanomaterials ; Nanoparticles ; Physics ; Second harmonic generation ; Silver ; Spectra ; Spectrum analysis ; Surface charge ; Time dependence</subject><ispartof>The Journal of chemical physics, 2019-12, Vol.151 (22), p.224701-224701</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-3158bf4916e5f698053d10b9e9907c01cf400f39da8399a5e6fed7348f7cdcdf3</citedby><cites>FETCH-LOGICAL-c445t-3158bf4916e5f698053d10b9e9907c01cf400f39da8399a5e6fed7348f7cdcdf3</cites><orcidid>0000-0001-7706-7789 ; 0000-0002-9141-684X ; 000000029141684X ; 0000000177067789</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5127941$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31837661$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1577884$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ranasinghe, Jeewan C.</creatorcontrib><creatorcontrib>Dikkumbura, Asela S.</creatorcontrib><creatorcontrib>Hamal, Prakash</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><creatorcontrib>Khoury, Rami A.</creatorcontrib><creatorcontrib>Smith, Holden T.</creatorcontrib><creatorcontrib>Lopata, Kenneth</creatorcontrib><creatorcontrib>Haber, Louis H.</creatorcontrib><title>Monitoring the growth dynamics of colloidal gold-silver core-shell nanoparticles using in situ second harmonic generation and extinction spectroscopy</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The growth dynamics of gold-silver core-shell (Au@Ag) nanoparticles are studied using in situ time-dependent second harmonic generation (SHG) and extinction spectroscopy to investigate the nanoparticle shell formation. The silver shell is grown by reduction of silver cations onto a 14 nm gold core using ascorbic acid in colloidal aqueous solution under varying reaction concentrations producing Au@Ag nanoparticles of final sizes ranging from 51 to 78 nm in diameter. The in situ extinction spectra show a rapid increase in intensity on the timescale of 5–6 s with blue shifting and narrowing of the plasmonic peak during the silver shell formation. The in situ SHG signals show an abrupt rise at early times of the reaction, followed by a time-dependent biexponential decrease, where the faster SHG lifetime corresponds to the timescale of the shell growth, and where the slower SHG lifetime is attributed to changes in the nanoparticle surface charge density. A large enhancement in the SHG signal at early stages of the reaction is caused by plasmonic hot spots due to the nanoparticle surface morphology, which becomes smoother as the reaction proceeds. The final extinction spectra are compared to finite-difference time-domain (FDTD) calculations, showing general agreement with experiment, where the plasmon peak red shifts and increases in spectral width as the silver shell thickness increases. These in situ SHG and extinction spectroscopy results, combined with FDTD calculations, help characterize the complicated processes involved in colloidal nanoparticle shell formation in real time for developing potential plasmon-enhanced nanomaterial applications.</description><subject>Aqueous solutions</subject><subject>Ascorbic acid</subject><subject>Charge density</subject><subject>Colloiding</subject><subject>Core-shell particles</subject><subject>Diameters</subject><subject>Extinction</subject><subject>Finite difference time domain method</subject><subject>Gold</subject><subject>Mathematical analysis</subject><subject>Morphology</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Physics</subject><subject>Second harmonic generation</subject><subject>Silver</subject><subject>Spectra</subject><subject>Spectrum analysis</subject><subject>Surface charge</subject><subject>Time dependence</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc2OFCEUhYnROG3rwhcwRDejSY1QVEGxNJPxJxnjRteEhksXk2oogRrtB_F9padbTUx0Re7Nl8O55yD0lJILSjh7TS962grZ0XtoRckgG8EluY9WhLS0kZzwM_Qo5xtCCBVt9xCdMTowwTldoR8fY_AlJh-2uIyAtyl-KyO2-6B33mQcHTZxmqK3esLbONkm--kWUt0maPII04SDDnHWqXgzQcZLPmj5gLMvC85gYrB41GlXPzJ4CwGSLj4GrOsevhcfzN2YZzAlxWzivH-MHjg9ZXhyetfoy9urz5fvm-tP7z5cvrluTNf1pWG0Hzauk5RD77gcSM8sJRsJUhJhCDWuI8QxafXApNQ9cAdWsG5wwlhjHVuj50fdmItX2fgCZqyGQ7WiaC_EMHQVOj9Cc4pfF8hF7Xw29XAdIC5ZtawVbGCU9xV98Rd6E5cU6gkHqpWslzX5NXp5pEw9Nydwak5-p9NeUaIOhSqqToVW9tlJcdnswP4mfzVYgVdH4OD-Ltj_qv0Tvo3pD6jmGs5PjZK5fg</recordid><startdate>20191214</startdate><enddate>20191214</enddate><creator>Ranasinghe, Jeewan C.</creator><creator>Dikkumbura, Asela S.</creator><creator>Hamal, Prakash</creator><creator>Chen, Min</creator><creator>Khoury, Rami A.</creator><creator>Smith, Holden T.</creator><creator>Lopata, Kenneth</creator><creator>Haber, Louis H.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7706-7789</orcidid><orcidid>https://orcid.org/0000-0002-9141-684X</orcidid><orcidid>https://orcid.org/000000029141684X</orcidid><orcidid>https://orcid.org/0000000177067789</orcidid></search><sort><creationdate>20191214</creationdate><title>Monitoring the growth dynamics of colloidal gold-silver core-shell nanoparticles using in situ second harmonic generation and extinction spectroscopy</title><author>Ranasinghe, Jeewan C. ; Dikkumbura, Asela S. ; Hamal, Prakash ; Chen, Min ; Khoury, Rami A. ; Smith, Holden T. ; Lopata, Kenneth ; Haber, Louis H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-3158bf4916e5f698053d10b9e9907c01cf400f39da8399a5e6fed7348f7cdcdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aqueous solutions</topic><topic>Ascorbic acid</topic><topic>Charge density</topic><topic>Colloiding</topic><topic>Core-shell particles</topic><topic>Diameters</topic><topic>Extinction</topic><topic>Finite difference time domain method</topic><topic>Gold</topic><topic>Mathematical analysis</topic><topic>Morphology</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Physics</topic><topic>Second harmonic generation</topic><topic>Silver</topic><topic>Spectra</topic><topic>Spectrum analysis</topic><topic>Surface charge</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranasinghe, Jeewan C.</creatorcontrib><creatorcontrib>Dikkumbura, Asela S.</creatorcontrib><creatorcontrib>Hamal, Prakash</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><creatorcontrib>Khoury, Rami A.</creatorcontrib><creatorcontrib>Smith, Holden T.</creatorcontrib><creatorcontrib>Lopata, Kenneth</creatorcontrib><creatorcontrib>Haber, Louis H.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranasinghe, Jeewan C.</au><au>Dikkumbura, Asela S.</au><au>Hamal, Prakash</au><au>Chen, Min</au><au>Khoury, Rami A.</au><au>Smith, Holden T.</au><au>Lopata, Kenneth</au><au>Haber, Louis H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring the growth dynamics of colloidal gold-silver core-shell nanoparticles using in situ second harmonic generation and extinction spectroscopy</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2019-12-14</date><risdate>2019</risdate><volume>151</volume><issue>22</issue><spage>224701</spage><epage>224701</epage><pages>224701-224701</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The growth dynamics of gold-silver core-shell (Au@Ag) nanoparticles are studied using in situ time-dependent second harmonic generation (SHG) and extinction spectroscopy to investigate the nanoparticle shell formation. The silver shell is grown by reduction of silver cations onto a 14 nm gold core using ascorbic acid in colloidal aqueous solution under varying reaction concentrations producing Au@Ag nanoparticles of final sizes ranging from 51 to 78 nm in diameter. The in situ extinction spectra show a rapid increase in intensity on the timescale of 5–6 s with blue shifting and narrowing of the plasmonic peak during the silver shell formation. The in situ SHG signals show an abrupt rise at early times of the reaction, followed by a time-dependent biexponential decrease, where the faster SHG lifetime corresponds to the timescale of the shell growth, and where the slower SHG lifetime is attributed to changes in the nanoparticle surface charge density. A large enhancement in the SHG signal at early stages of the reaction is caused by plasmonic hot spots due to the nanoparticle surface morphology, which becomes smoother as the reaction proceeds. The final extinction spectra are compared to finite-difference time-domain (FDTD) calculations, showing general agreement with experiment, where the plasmon peak red shifts and increases in spectral width as the silver shell thickness increases. These in situ SHG and extinction spectroscopy results, combined with FDTD calculations, help characterize the complicated processes involved in colloidal nanoparticle shell formation in real time for developing potential plasmon-enhanced nanomaterial applications.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>31837661</pmid><doi>10.1063/1.5127941</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7706-7789</orcidid><orcidid>https://orcid.org/0000-0002-9141-684X</orcidid><orcidid>https://orcid.org/000000029141684X</orcidid><orcidid>https://orcid.org/0000000177067789</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2019-12, Vol.151 (22), p.224701-224701
issn 0021-9606
1089-7690
language eng
recordid cdi_scitation_primary_10_1063_1_5127941
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建)
subjects Aqueous solutions
Ascorbic acid
Charge density
Colloiding
Core-shell particles
Diameters
Extinction
Finite difference time domain method
Gold
Mathematical analysis
Morphology
Nanomaterials
Nanoparticles
Physics
Second harmonic generation
Silver
Spectra
Spectrum analysis
Surface charge
Time dependence
title Monitoring the growth dynamics of colloidal gold-silver core-shell nanoparticles using in situ second harmonic generation and extinction spectroscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A49%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20the%20growth%20dynamics%20of%20colloidal%20gold-silver%20core-shell%20nanoparticles%20using%20in%20situ%20second%20harmonic%20generation%20and%20extinction%20spectroscopy&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Ranasinghe,%20Jeewan%20C.&rft.date=2019-12-14&rft.volume=151&rft.issue=22&rft.spage=224701&rft.epage=224701&rft.pages=224701-224701&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5127941&rft_dat=%3Cproquest_scita%3E2322935918%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c445t-3158bf4916e5f698053d10b9e9907c01cf400f39da8399a5e6fed7348f7cdcdf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2322935918&rft_id=info:pmid/31837661&rfr_iscdi=true