Loading…

Focusing light through scattering media by reinforced hybrid algorithms

Light scattering inside disordered media poses a significant challenge to achieve deep depth and high resolution simultaneously in biomedical optical imaging. Wavefront shaping emerged recently as one of the most potential methods to tackle this problem. So far, numerous algorithms have been reporte...

Full description

Saved in:
Bibliographic Details
Published in:APL photonics 2020-01, Vol.5 (1), p.016109-016109-12
Main Authors: Luo, Yunqi, Yan, Suxia, Li, Huanhao, Lai, Puxiang, Zheng, Yuanjin
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Light scattering inside disordered media poses a significant challenge to achieve deep depth and high resolution simultaneously in biomedical optical imaging. Wavefront shaping emerged recently as one of the most potential methods to tackle this problem. So far, numerous algorithms have been reported, while each has its own pros and cons. In this article, we exploit a new thought that one algorithm can be reinforced by another complementary algorithm since they effectively compensate each other’s weaknesses, resulting in a more efficient hybrid algorithm. Herein, we introduce a systematical approach named GeneNN (Genetic Neural Network) as a proof of concept. Preliminary light focusing has been achieved by a deep neural network, whose results are fed to a genetic algorithm as an initial condition. The genetic algorithm furthers the optimization, evolving to converge into the global optimum. Experimental results demonstrate that with the proposed GeneNN, optimization speed is almost doubled and wavefront shaping performance can be improved up to 40% over conventional methods. The reinforced hybrid algorithm shows great potential in facilitating various biomedical and optical imaging techniques.
ISSN:2378-0967
2378-0967
DOI:10.1063/1.5131181