Loading…
Solving ordinary differential equations using wavelet neural networks
In this paper, we present an artificial neural network (ANN) approach to approximate the solutions of ordinary differential equations (ODEs) with initial conditions. The wavelet neural networks (WNNs) with Gaussian wavelet and Mexican Hat activation functions are applied as universal approximators....
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2184 |
creator | Tan, Lee Sen Zainuddin, Zarita Ong, Pauline |
description | In this paper, we present an artificial neural network (ANN) approach to approximate the solutions of ordinary differential equations (ODEs) with initial conditions. The wavelet neural networks (WNNs) with Gaussian wavelet and Mexican Hat activation functions are applied as universal approximators. The proposed methods convert the application of solving ODEs from a constrained optimization problem into an unconstrained optimization problem by satisfying the initial conditions exactly. Then, the momentum backpropagation (mBP) is employed to minimize the unsupervised error function, in which the only adjustable parameters are the weights from the hidden layer to the output layer. Initial value problems (IVPs) are solved to illustrate the applicability and accuracy of the proposed momentum backpropagation wavelet neural network (mBPWNN) methods. In comparison with the solutions of other existing ANN methods, numerical results showed that the mBPWNN methods yield a superior accuracy. |
doi_str_mv | 10.1063/1.5136487 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5136487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321962525</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-ea515500df36184d352cb71d6b5f8a961b27b3bc933f93c986578922068a72033</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoWKsL_0HBndAxH83XUoZxFAZcqOAupG0qGWvSSdIZ_Pd2nAF3rt7iHd497wJwjeAMQUbu0IwiwirBT0CGKEUlZ4idggxCWZW4Iu_n4CLGNYRYci4ysHjx_da6j8KH1jodvovWdp0JxiWr-8JsRp2sd7EY457a6a3pTSqcGcO0dibtfPiMl-Cs0300V8eZg7eHxev8sVw9L5_m96tywJSk0mg6OUHYdoQhUbWE4qbmqGU17YSWDNWY16RuJCGdJI0UjHIhMYZMaI4hITm4Odwdgt-MJia19mNwU6TCBCPJMJ2CcnB7oGJj06--GoL9mp5TCKp9TQqpY03_wVsf_kA1TNY_U5doFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2321962525</pqid></control><display><type>conference_proceeding</type><title>Solving ordinary differential equations using wavelet neural networks</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Tan, Lee Sen ; Zainuddin, Zarita ; Ong, Pauline</creator><contributor>Ismail, Mohd Tahir ; Rahman, Rosmanjawati Abdul ; Yatim, Yazariah Mohd ; Sulaiman, Hajar ; Abdullah, Farah Aini ; Ahmad, Syakila ; Ali, Majid Khan Majahar ; Ramli, Norshafira ; Ahmad, Noor Atinah</contributor><creatorcontrib>Tan, Lee Sen ; Zainuddin, Zarita ; Ong, Pauline ; Ismail, Mohd Tahir ; Rahman, Rosmanjawati Abdul ; Yatim, Yazariah Mohd ; Sulaiman, Hajar ; Abdullah, Farah Aini ; Ahmad, Syakila ; Ali, Majid Khan Majahar ; Ramli, Norshafira ; Ahmad, Noor Atinah</creatorcontrib><description>In this paper, we present an artificial neural network (ANN) approach to approximate the solutions of ordinary differential equations (ODEs) with initial conditions. The wavelet neural networks (WNNs) with Gaussian wavelet and Mexican Hat activation functions are applied as universal approximators. The proposed methods convert the application of solving ODEs from a constrained optimization problem into an unconstrained optimization problem by satisfying the initial conditions exactly. Then, the momentum backpropagation (mBP) is employed to minimize the unsupervised error function, in which the only adjustable parameters are the weights from the hidden layer to the output layer. Initial value problems (IVPs) are solved to illustrate the applicability and accuracy of the proposed momentum backpropagation wavelet neural network (mBPWNN) methods. In comparison with the solutions of other existing ANN methods, numerical results showed that the mBPWNN methods yield a superior accuracy.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5136487</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Approximation ; Artificial neural networks ; Back propagation ; Boundary value problems ; Differential equations ; Error functions ; Initial conditions ; Momentum ; Neural networks ; Numerical methods ; Optimization ; Ordinary differential equations ; Wavelet analysis</subject><ispartof>AIP conference proceedings, 2019, Vol.2184 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,777,781,786,787,23911,23912,25121,27905,27906</link.rule.ids></links><search><contributor>Ismail, Mohd Tahir</contributor><contributor>Rahman, Rosmanjawati Abdul</contributor><contributor>Yatim, Yazariah Mohd</contributor><contributor>Sulaiman, Hajar</contributor><contributor>Abdullah, Farah Aini</contributor><contributor>Ahmad, Syakila</contributor><contributor>Ali, Majid Khan Majahar</contributor><contributor>Ramli, Norshafira</contributor><contributor>Ahmad, Noor Atinah</contributor><creatorcontrib>Tan, Lee Sen</creatorcontrib><creatorcontrib>Zainuddin, Zarita</creatorcontrib><creatorcontrib>Ong, Pauline</creatorcontrib><title>Solving ordinary differential equations using wavelet neural networks</title><title>AIP conference proceedings</title><description>In this paper, we present an artificial neural network (ANN) approach to approximate the solutions of ordinary differential equations (ODEs) with initial conditions. The wavelet neural networks (WNNs) with Gaussian wavelet and Mexican Hat activation functions are applied as universal approximators. The proposed methods convert the application of solving ODEs from a constrained optimization problem into an unconstrained optimization problem by satisfying the initial conditions exactly. Then, the momentum backpropagation (mBP) is employed to minimize the unsupervised error function, in which the only adjustable parameters are the weights from the hidden layer to the output layer. Initial value problems (IVPs) are solved to illustrate the applicability and accuracy of the proposed momentum backpropagation wavelet neural network (mBPWNN) methods. In comparison with the solutions of other existing ANN methods, numerical results showed that the mBPWNN methods yield a superior accuracy.</description><subject>Approximation</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Boundary value problems</subject><subject>Differential equations</subject><subject>Error functions</subject><subject>Initial conditions</subject><subject>Momentum</subject><subject>Neural networks</subject><subject>Numerical methods</subject><subject>Optimization</subject><subject>Ordinary differential equations</subject><subject>Wavelet analysis</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LxDAURYMoWKsL_0HBndAxH83XUoZxFAZcqOAupG0qGWvSSdIZ_Pd2nAF3rt7iHd497wJwjeAMQUbu0IwiwirBT0CGKEUlZ4idggxCWZW4Iu_n4CLGNYRYci4ysHjx_da6j8KH1jodvovWdp0JxiWr-8JsRp2sd7EY457a6a3pTSqcGcO0dibtfPiMl-Cs0300V8eZg7eHxev8sVw9L5_m96tywJSk0mg6OUHYdoQhUbWE4qbmqGU17YSWDNWY16RuJCGdJI0UjHIhMYZMaI4hITm4Odwdgt-MJia19mNwU6TCBCPJMJ2CcnB7oGJj06--GoL9mp5TCKp9TQqpY03_wVsf_kA1TNY_U5doFw</recordid><startdate>20191204</startdate><enddate>20191204</enddate><creator>Tan, Lee Sen</creator><creator>Zainuddin, Zarita</creator><creator>Ong, Pauline</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20191204</creationdate><title>Solving ordinary differential equations using wavelet neural networks</title><author>Tan, Lee Sen ; Zainuddin, Zarita ; Ong, Pauline</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-ea515500df36184d352cb71d6b5f8a961b27b3bc933f93c986578922068a72033</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Approximation</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Boundary value problems</topic><topic>Differential equations</topic><topic>Error functions</topic><topic>Initial conditions</topic><topic>Momentum</topic><topic>Neural networks</topic><topic>Numerical methods</topic><topic>Optimization</topic><topic>Ordinary differential equations</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Lee Sen</creatorcontrib><creatorcontrib>Zainuddin, Zarita</creatorcontrib><creatorcontrib>Ong, Pauline</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Lee Sen</au><au>Zainuddin, Zarita</au><au>Ong, Pauline</au><au>Ismail, Mohd Tahir</au><au>Rahman, Rosmanjawati Abdul</au><au>Yatim, Yazariah Mohd</au><au>Sulaiman, Hajar</au><au>Abdullah, Farah Aini</au><au>Ahmad, Syakila</au><au>Ali, Majid Khan Majahar</au><au>Ramli, Norshafira</au><au>Ahmad, Noor Atinah</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Solving ordinary differential equations using wavelet neural networks</atitle><btitle>AIP conference proceedings</btitle><date>2019-12-04</date><risdate>2019</risdate><volume>2184</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this paper, we present an artificial neural network (ANN) approach to approximate the solutions of ordinary differential equations (ODEs) with initial conditions. The wavelet neural networks (WNNs) with Gaussian wavelet and Mexican Hat activation functions are applied as universal approximators. The proposed methods convert the application of solving ODEs from a constrained optimization problem into an unconstrained optimization problem by satisfying the initial conditions exactly. Then, the momentum backpropagation (mBP) is employed to minimize the unsupervised error function, in which the only adjustable parameters are the weights from the hidden layer to the output layer. Initial value problems (IVPs) are solved to illustrate the applicability and accuracy of the proposed momentum backpropagation wavelet neural network (mBPWNN) methods. In comparison with the solutions of other existing ANN methods, numerical results showed that the mBPWNN methods yield a superior accuracy.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5136487</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2019, Vol.2184 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5136487 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Approximation Artificial neural networks Back propagation Boundary value problems Differential equations Error functions Initial conditions Momentum Neural networks Numerical methods Optimization Ordinary differential equations Wavelet analysis |
title | Solving ordinary differential equations using wavelet neural networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T23%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Solving%20ordinary%20differential%20equations%20using%20wavelet%20neural%20networks&rft.btitle=AIP%20conference%20proceedings&rft.au=Tan,%20Lee%20Sen&rft.date=2019-12-04&rft.volume=2184&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5136487&rft_dat=%3Cproquest_scita%3E2321962525%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p253t-ea515500df36184d352cb71d6b5f8a961b27b3bc933f93c986578922068a72033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2321962525&rft_id=info:pmid/&rfr_iscdi=true |