Loading…

Solving ordinary differential equations using wavelet neural networks

In this paper, we present an artificial neural network (ANN) approach to approximate the solutions of ordinary differential equations (ODEs) with initial conditions. The wavelet neural networks (WNNs) with Gaussian wavelet and Mexican Hat activation functions are applied as universal approximators....

Full description

Saved in:
Bibliographic Details
Main Authors: Tan, Lee Sen, Zainuddin, Zarita, Ong, Pauline
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2184
creator Tan, Lee Sen
Zainuddin, Zarita
Ong, Pauline
description In this paper, we present an artificial neural network (ANN) approach to approximate the solutions of ordinary differential equations (ODEs) with initial conditions. The wavelet neural networks (WNNs) with Gaussian wavelet and Mexican Hat activation functions are applied as universal approximators. The proposed methods convert the application of solving ODEs from a constrained optimization problem into an unconstrained optimization problem by satisfying the initial conditions exactly. Then, the momentum backpropagation (mBP) is employed to minimize the unsupervised error function, in which the only adjustable parameters are the weights from the hidden layer to the output layer. Initial value problems (IVPs) are solved to illustrate the applicability and accuracy of the proposed momentum backpropagation wavelet neural network (mBPWNN) methods. In comparison with the solutions of other existing ANN methods, numerical results showed that the mBPWNN methods yield a superior accuracy.
doi_str_mv 10.1063/1.5136487
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5136487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321962525</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-ea515500df36184d352cb71d6b5f8a961b27b3bc933f93c986578922068a72033</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoWKsL_0HBndAxH83XUoZxFAZcqOAupG0qGWvSSdIZ_Pd2nAF3rt7iHd497wJwjeAMQUbu0IwiwirBT0CGKEUlZ4idggxCWZW4Iu_n4CLGNYRYci4ysHjx_da6j8KH1jodvovWdp0JxiWr-8JsRp2sd7EY457a6a3pTSqcGcO0dibtfPiMl-Cs0300V8eZg7eHxev8sVw9L5_m96tywJSk0mg6OUHYdoQhUbWE4qbmqGU17YSWDNWY16RuJCGdJI0UjHIhMYZMaI4hITm4Odwdgt-MJia19mNwU6TCBCPJMJ2CcnB7oGJj06--GoL9mp5TCKp9TQqpY03_wVsf_kA1TNY_U5doFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2321962525</pqid></control><display><type>conference_proceeding</type><title>Solving ordinary differential equations using wavelet neural networks</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Tan, Lee Sen ; Zainuddin, Zarita ; Ong, Pauline</creator><contributor>Ismail, Mohd Tahir ; Rahman, Rosmanjawati Abdul ; Yatim, Yazariah Mohd ; Sulaiman, Hajar ; Abdullah, Farah Aini ; Ahmad, Syakila ; Ali, Majid Khan Majahar ; Ramli, Norshafira ; Ahmad, Noor Atinah</contributor><creatorcontrib>Tan, Lee Sen ; Zainuddin, Zarita ; Ong, Pauline ; Ismail, Mohd Tahir ; Rahman, Rosmanjawati Abdul ; Yatim, Yazariah Mohd ; Sulaiman, Hajar ; Abdullah, Farah Aini ; Ahmad, Syakila ; Ali, Majid Khan Majahar ; Ramli, Norshafira ; Ahmad, Noor Atinah</creatorcontrib><description>In this paper, we present an artificial neural network (ANN) approach to approximate the solutions of ordinary differential equations (ODEs) with initial conditions. The wavelet neural networks (WNNs) with Gaussian wavelet and Mexican Hat activation functions are applied as universal approximators. The proposed methods convert the application of solving ODEs from a constrained optimization problem into an unconstrained optimization problem by satisfying the initial conditions exactly. Then, the momentum backpropagation (mBP) is employed to minimize the unsupervised error function, in which the only adjustable parameters are the weights from the hidden layer to the output layer. Initial value problems (IVPs) are solved to illustrate the applicability and accuracy of the proposed momentum backpropagation wavelet neural network (mBPWNN) methods. In comparison with the solutions of other existing ANN methods, numerical results showed that the mBPWNN methods yield a superior accuracy.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5136487</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Approximation ; Artificial neural networks ; Back propagation ; Boundary value problems ; Differential equations ; Error functions ; Initial conditions ; Momentum ; Neural networks ; Numerical methods ; Optimization ; Ordinary differential equations ; Wavelet analysis</subject><ispartof>AIP conference proceedings, 2019, Vol.2184 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,777,781,786,787,23911,23912,25121,27905,27906</link.rule.ids></links><search><contributor>Ismail, Mohd Tahir</contributor><contributor>Rahman, Rosmanjawati Abdul</contributor><contributor>Yatim, Yazariah Mohd</contributor><contributor>Sulaiman, Hajar</contributor><contributor>Abdullah, Farah Aini</contributor><contributor>Ahmad, Syakila</contributor><contributor>Ali, Majid Khan Majahar</contributor><contributor>Ramli, Norshafira</contributor><contributor>Ahmad, Noor Atinah</contributor><creatorcontrib>Tan, Lee Sen</creatorcontrib><creatorcontrib>Zainuddin, Zarita</creatorcontrib><creatorcontrib>Ong, Pauline</creatorcontrib><title>Solving ordinary differential equations using wavelet neural networks</title><title>AIP conference proceedings</title><description>In this paper, we present an artificial neural network (ANN) approach to approximate the solutions of ordinary differential equations (ODEs) with initial conditions. The wavelet neural networks (WNNs) with Gaussian wavelet and Mexican Hat activation functions are applied as universal approximators. The proposed methods convert the application of solving ODEs from a constrained optimization problem into an unconstrained optimization problem by satisfying the initial conditions exactly. Then, the momentum backpropagation (mBP) is employed to minimize the unsupervised error function, in which the only adjustable parameters are the weights from the hidden layer to the output layer. Initial value problems (IVPs) are solved to illustrate the applicability and accuracy of the proposed momentum backpropagation wavelet neural network (mBPWNN) methods. In comparison with the solutions of other existing ANN methods, numerical results showed that the mBPWNN methods yield a superior accuracy.</description><subject>Approximation</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Boundary value problems</subject><subject>Differential equations</subject><subject>Error functions</subject><subject>Initial conditions</subject><subject>Momentum</subject><subject>Neural networks</subject><subject>Numerical methods</subject><subject>Optimization</subject><subject>Ordinary differential equations</subject><subject>Wavelet analysis</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LxDAURYMoWKsL_0HBndAxH83XUoZxFAZcqOAupG0qGWvSSdIZ_Pd2nAF3rt7iHd497wJwjeAMQUbu0IwiwirBT0CGKEUlZ4idggxCWZW4Iu_n4CLGNYRYci4ysHjx_da6j8KH1jodvovWdp0JxiWr-8JsRp2sd7EY457a6a3pTSqcGcO0dibtfPiMl-Cs0300V8eZg7eHxev8sVw9L5_m96tywJSk0mg6OUHYdoQhUbWE4qbmqGU17YSWDNWY16RuJCGdJI0UjHIhMYZMaI4hITm4Odwdgt-MJia19mNwU6TCBCPJMJ2CcnB7oGJj06--GoL9mp5TCKp9TQqpY03_wVsf_kA1TNY_U5doFw</recordid><startdate>20191204</startdate><enddate>20191204</enddate><creator>Tan, Lee Sen</creator><creator>Zainuddin, Zarita</creator><creator>Ong, Pauline</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20191204</creationdate><title>Solving ordinary differential equations using wavelet neural networks</title><author>Tan, Lee Sen ; Zainuddin, Zarita ; Ong, Pauline</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-ea515500df36184d352cb71d6b5f8a961b27b3bc933f93c986578922068a72033</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Approximation</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Boundary value problems</topic><topic>Differential equations</topic><topic>Error functions</topic><topic>Initial conditions</topic><topic>Momentum</topic><topic>Neural networks</topic><topic>Numerical methods</topic><topic>Optimization</topic><topic>Ordinary differential equations</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Lee Sen</creatorcontrib><creatorcontrib>Zainuddin, Zarita</creatorcontrib><creatorcontrib>Ong, Pauline</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Lee Sen</au><au>Zainuddin, Zarita</au><au>Ong, Pauline</au><au>Ismail, Mohd Tahir</au><au>Rahman, Rosmanjawati Abdul</au><au>Yatim, Yazariah Mohd</au><au>Sulaiman, Hajar</au><au>Abdullah, Farah Aini</au><au>Ahmad, Syakila</au><au>Ali, Majid Khan Majahar</au><au>Ramli, Norshafira</au><au>Ahmad, Noor Atinah</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Solving ordinary differential equations using wavelet neural networks</atitle><btitle>AIP conference proceedings</btitle><date>2019-12-04</date><risdate>2019</risdate><volume>2184</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this paper, we present an artificial neural network (ANN) approach to approximate the solutions of ordinary differential equations (ODEs) with initial conditions. The wavelet neural networks (WNNs) with Gaussian wavelet and Mexican Hat activation functions are applied as universal approximators. The proposed methods convert the application of solving ODEs from a constrained optimization problem into an unconstrained optimization problem by satisfying the initial conditions exactly. Then, the momentum backpropagation (mBP) is employed to minimize the unsupervised error function, in which the only adjustable parameters are the weights from the hidden layer to the output layer. Initial value problems (IVPs) are solved to illustrate the applicability and accuracy of the proposed momentum backpropagation wavelet neural network (mBPWNN) methods. In comparison with the solutions of other existing ANN methods, numerical results showed that the mBPWNN methods yield a superior accuracy.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5136487</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2019, Vol.2184 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_5136487
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Approximation
Artificial neural networks
Back propagation
Boundary value problems
Differential equations
Error functions
Initial conditions
Momentum
Neural networks
Numerical methods
Optimization
Ordinary differential equations
Wavelet analysis
title Solving ordinary differential equations using wavelet neural networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T23%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Solving%20ordinary%20differential%20equations%20using%20wavelet%20neural%20networks&rft.btitle=AIP%20conference%20proceedings&rft.au=Tan,%20Lee%20Sen&rft.date=2019-12-04&rft.volume=2184&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5136487&rft_dat=%3Cproquest_scita%3E2321962525%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p253t-ea515500df36184d352cb71d6b5f8a961b27b3bc933f93c986578922068a72033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2321962525&rft_id=info:pmid/&rfr_iscdi=true