Loading…

The application of the generalized Bohm criterion to Emmert’s solution of the warm ion collisionless plasma equation

Emmert e t a l. [Phys. Fluids 2 3, 803 (1980)] have modeled the flow of a one‐dimensional collisionless plasma to a material wall by formulating and solving the warm‐ion plasma equation. In contrast to the result of the cold‐ion plasma equation it was found that the electric field at the plasma–shea...

Full description

Saved in:
Bibliographic Details
Published in:The Physics of fluids (1958) 1987-07, Vol.30 (7), p.2264-2265
Main Author: Bissell, R. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2620-cd010e005696c91caed530b010eb604816799ea447dd8268e0ca27a83b9f3bcf3
cites cdi_FETCH-LOGICAL-c2620-cd010e005696c91caed530b010eb604816799ea447dd8268e0ca27a83b9f3bcf3
container_end_page 2265
container_issue 7
container_start_page 2264
container_title The Physics of fluids (1958)
container_volume 30
creator Bissell, R. C.
description Emmert e t a l. [Phys. Fluids 2 3, 803 (1980)] have modeled the flow of a one‐dimensional collisionless plasma to a material wall by formulating and solving the warm‐ion plasma equation. In contrast to the result of the cold‐ion plasma equation it was found that the electric field at the plasma–sheath boundary was finite. It is first shown that Emmert’s solution satisfies the generalized Bohm criterion, and is thus a valid solution, before discussing the cause of the difference in the results of the two models in calculating the boundary electric field.
doi_str_mv 10.1063/1.866160
format article
fullrecord <record><control><sourceid>scitation_pasca</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_866160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_866160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2620-cd010e005696c91caed530b010eb604816799ea447dd8268e0ca27a83b9f3bcf3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqUgcQQvWMAiZWynTryEqvxIldiUdTRxHGrkNMFOQXTFNbgeJyFpEGLDamaevnmjeYScMpgwkOKSTVIpmYQ9MuJMiihWKt0nIwDBIsUSdkiOQngG4DGLxYi8LleGYtM4q7G19ZrWJW076cmsjUdnt6ag1_Wqotrb1vieaGs6ryrj26-Pz0BD7TZ_F9_QV7Sfde2cDV3nTAi0cRgqpOZlsztzTA5KdMGc_NQxebyZL2d30eLh9n52tYg0lxwiXQADAzCVSmrFNJpiKiDvxVxCnDKZKGUwjpOiSLlMDWjkCaYiV6XIdSnG5Hzw1b4OwZsya7yt0L9nDLI-r4xlQ14dejagDQaNrvS41jb88kks-FSIDrsYsKBtu_vlf8tvljN5eA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The application of the generalized Bohm criterion to Emmert’s solution of the warm ion collisionless plasma equation</title><source>Alma/SFX Local Collection</source><creator>Bissell, R. C.</creator><creatorcontrib>Bissell, R. C.</creatorcontrib><description>Emmert e t a l. [Phys. Fluids 2 3, 803 (1980)] have modeled the flow of a one‐dimensional collisionless plasma to a material wall by formulating and solving the warm‐ion plasma equation. In contrast to the result of the cold‐ion plasma equation it was found that the electric field at the plasma–sheath boundary was finite. It is first shown that Emmert’s solution satisfies the generalized Bohm criterion, and is thus a valid solution, before discussing the cause of the difference in the results of the two models in calculating the boundary electric field.</description><identifier>ISSN: 0031-9171</identifier><identifier>EISSN: 2163-4998</identifier><identifier>DOI: 10.1063/1.866160</identifier><identifier>CODEN: PFLDAS</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma dynamics and flow</subject><ispartof>The Physics of fluids (1958), 1987-07, Vol.30 (7), p.2264-2265</ispartof><rights>American Institute of Physics</rights><rights>1988 INIST-CNRS</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2620-cd010e005696c91caed530b010eb604816799ea447dd8268e0ca27a83b9f3bcf3</citedby><cites>FETCH-LOGICAL-c2620-cd010e005696c91caed530b010eb604816799ea447dd8268e0ca27a83b9f3bcf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7432533$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bissell, R. C.</creatorcontrib><title>The application of the generalized Bohm criterion to Emmert’s solution of the warm ion collisionless plasma equation</title><title>The Physics of fluids (1958)</title><description>Emmert e t a l. [Phys. Fluids 2 3, 803 (1980)] have modeled the flow of a one‐dimensional collisionless plasma to a material wall by formulating and solving the warm‐ion plasma equation. In contrast to the result of the cold‐ion plasma equation it was found that the electric field at the plasma–sheath boundary was finite. It is first shown that Emmert’s solution satisfies the generalized Bohm criterion, and is thus a valid solution, before discussing the cause of the difference in the results of the two models in calculating the boundary electric field.</description><subject>Exact sciences and technology</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma dynamics and flow</subject><issn>0031-9171</issn><issn>2163-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqUgcQQvWMAiZWynTryEqvxIldiUdTRxHGrkNMFOQXTFNbgeJyFpEGLDamaevnmjeYScMpgwkOKSTVIpmYQ9MuJMiihWKt0nIwDBIsUSdkiOQngG4DGLxYi8LleGYtM4q7G19ZrWJW076cmsjUdnt6ag1_Wqotrb1vieaGs6ryrj26-Pz0BD7TZ_F9_QV7Sfde2cDV3nTAi0cRgqpOZlsztzTA5KdMGc_NQxebyZL2d30eLh9n52tYg0lxwiXQADAzCVSmrFNJpiKiDvxVxCnDKZKGUwjpOiSLlMDWjkCaYiV6XIdSnG5Hzw1b4OwZsya7yt0L9nDLI-r4xlQ14dejagDQaNrvS41jb88kks-FSIDrsYsKBtu_vlf8tvljN5eA</recordid><startdate>198707</startdate><enddate>198707</enddate><creator>Bissell, R. C.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>198707</creationdate><title>The application of the generalized Bohm criterion to Emmert’s solution of the warm ion collisionless plasma equation</title><author>Bissell, R. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2620-cd010e005696c91caed530b010eb604816799ea447dd8268e0ca27a83b9f3bcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Exact sciences and technology</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma dynamics and flow</topic><toplevel>online_resources</toplevel><creatorcontrib>Bissell, R. C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Physics of fluids (1958)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bissell, R. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The application of the generalized Bohm criterion to Emmert’s solution of the warm ion collisionless plasma equation</atitle><jtitle>The Physics of fluids (1958)</jtitle><date>1987-07</date><risdate>1987</risdate><volume>30</volume><issue>7</issue><spage>2264</spage><epage>2265</epage><pages>2264-2265</pages><issn>0031-9171</issn><eissn>2163-4998</eissn><coden>PFLDAS</coden><abstract>Emmert e t a l. [Phys. Fluids 2 3, 803 (1980)] have modeled the flow of a one‐dimensional collisionless plasma to a material wall by formulating and solving the warm‐ion plasma equation. In contrast to the result of the cold‐ion plasma equation it was found that the electric field at the plasma–sheath boundary was finite. It is first shown that Emmert’s solution satisfies the generalized Bohm criterion, and is thus a valid solution, before discussing the cause of the difference in the results of the two models in calculating the boundary electric field.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.866160</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9171
ispartof The Physics of fluids (1958), 1987-07, Vol.30 (7), p.2264-2265
issn 0031-9171
2163-4998
language eng
recordid cdi_scitation_primary_10_1063_1_866160
source Alma/SFX Local Collection
subjects Exact sciences and technology
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
Plasma dynamics and flow
title The application of the generalized Bohm criterion to Emmert’s solution of the warm ion collisionless plasma equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A29%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20application%20of%20the%20generalized%20Bohm%20criterion%20to%20Emmert%E2%80%99s%20solution%20of%20the%20warm%20ion%20collisionless%20plasma%20equation&rft.jtitle=The%20Physics%20of%20fluids%20(1958)&rft.au=Bissell,%20R.%20C.&rft.date=1987-07&rft.volume=30&rft.issue=7&rft.spage=2264&rft.epage=2265&rft.pages=2264-2265&rft.issn=0031-9171&rft.eissn=2163-4998&rft.coden=PFLDAS&rft_id=info:doi/10.1063/1.866160&rft_dat=%3Cscitation_pasca%3Escitation_primary_10_1063_1_866160%3C/scitation_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2620-cd010e005696c91caed530b010eb604816799ea447dd8268e0ca27a83b9f3bcf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true