Loading…

Self‐similar invariant families of turbulent flows

Some physically significant consequences of recent advances in the theory of homogeneous statistical solutions of Navier–Stokes equations are presented. Invariance properties of families of those solutions are discussed and used to derive rigorously certain previously conjectured results, e.g., the...

Full description

Saved in:
Bibliographic Details
Published in:The Physics of fluids (1958) 1987-07, Vol.30 (7), p.2007-2020
Main Authors: Foias, C., Manley, O. P., Teman, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c256t-60f7d718b837087f5a4646d08658ece571e8364f4a91027c7a8030d32d8e14433
cites cdi_FETCH-LOGICAL-c256t-60f7d718b837087f5a4646d08658ece571e8364f4a91027c7a8030d32d8e14433
container_end_page 2020
container_issue 7
container_start_page 2007
container_title The Physics of fluids (1958)
container_volume 30
creator Foias, C.
Manley, O. P.
Teman, R.
description Some physically significant consequences of recent advances in the theory of homogeneous statistical solutions of Navier–Stokes equations are presented. Invariance properties of families of those solutions are discussed and used to derive rigorously certain previously conjectured results, e.g., the Kolmogorov spectrum. Others include a reinterpretation of the von Karman–Howarth–Dryden equation that leads to the conditions for the existence of an inertial subrange. Further an application of Poincaré’s inequality produces a different view of intermittency. It is also suggested how a measurement of the two‐point triple velocity correlation could yield an accurate value of Kolmogorov’s constant.
doi_str_mv 10.1063/1.866215
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_866215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_866215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-60f7d718b837087f5a4646d08658ece571e8364f4a91027c7a8030d32d8e14433</originalsourceid><addsrcrecordid>eNp1z8FKxDAUBdAgCtZR8BO6cKGLju8laZIuZXBUGHChrsubNIFIpx2SjuLOT_Ab_RI7VNy5unA5XLiMnSPMEZS4xrlRimN5wDKOShSyqswhywAEFhVqPGYnKb0CcIlSZEw-udZ_f36lsAktxTx0bxQDdUPuaWyCS3nv82EX17vW7du2f0-n7MhTm9zZb87Yy_L2eXFfrB7vHhY3q8LyUg2FAq8bjWZthAajfUlSSdWAUaVx1pUanRFKekkVAtdWkwEBjeCNcSilEDN2Oe3a2KcUna-3MWwoftQI9f5tjfX0dqQXE91SstT6SJ0N6c9rxaFUMLKriSUbBhpC3_0_-QMvd1_7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Self‐similar invariant families of turbulent flows</title><source>Alma/SFX Local Collection</source><creator>Foias, C. ; Manley, O. P. ; Teman, R.</creator><creatorcontrib>Foias, C. ; Manley, O. P. ; Teman, R.</creatorcontrib><description>Some physically significant consequences of recent advances in the theory of homogeneous statistical solutions of Navier–Stokes equations are presented. Invariance properties of families of those solutions are discussed and used to derive rigorously certain previously conjectured results, e.g., the Kolmogorov spectrum. Others include a reinterpretation of the von Karman–Howarth–Dryden equation that leads to the conditions for the existence of an inertial subrange. Further an application of Poincaré’s inequality produces a different view of intermittency. It is also suggested how a measurement of the two‐point triple velocity correlation could yield an accurate value of Kolmogorov’s constant.</description><identifier>ISSN: 0031-9171</identifier><identifier>EISSN: 2163-4998</identifier><identifier>DOI: 10.1063/1.866215</identifier><identifier>CODEN: PFLDAS</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Physics ; Turbulent flows, convection, and heat transfer</subject><ispartof>The Physics of fluids (1958), 1987-07, Vol.30 (7), p.2007-2020</ispartof><rights>American Institute of Physics</rights><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c256t-60f7d718b837087f5a4646d08658ece571e8364f4a91027c7a8030d32d8e14433</citedby><cites>FETCH-LOGICAL-c256t-60f7d718b837087f5a4646d08658ece571e8364f4a91027c7a8030d32d8e14433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7620560$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Foias, C.</creatorcontrib><creatorcontrib>Manley, O. P.</creatorcontrib><creatorcontrib>Teman, R.</creatorcontrib><title>Self‐similar invariant families of turbulent flows</title><title>The Physics of fluids (1958)</title><description>Some physically significant consequences of recent advances in the theory of homogeneous statistical solutions of Navier–Stokes equations are presented. Invariance properties of families of those solutions are discussed and used to derive rigorously certain previously conjectured results, e.g., the Kolmogorov spectrum. Others include a reinterpretation of the von Karman–Howarth–Dryden equation that leads to the conditions for the existence of an inertial subrange. Further an application of Poincaré’s inequality produces a different view of intermittency. It is also suggested how a measurement of the two‐point triple velocity correlation could yield an accurate value of Kolmogorov’s constant.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0031-9171</issn><issn>2163-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNp1z8FKxDAUBdAgCtZR8BO6cKGLju8laZIuZXBUGHChrsubNIFIpx2SjuLOT_Ab_RI7VNy5unA5XLiMnSPMEZS4xrlRimN5wDKOShSyqswhywAEFhVqPGYnKb0CcIlSZEw-udZ_f36lsAktxTx0bxQDdUPuaWyCS3nv82EX17vW7du2f0-n7MhTm9zZb87Yy_L2eXFfrB7vHhY3q8LyUg2FAq8bjWZthAajfUlSSdWAUaVx1pUanRFKekkVAtdWkwEBjeCNcSilEDN2Oe3a2KcUna-3MWwoftQI9f5tjfX0dqQXE91SstT6SJ0N6c9rxaFUMLKriSUbBhpC3_0_-QMvd1_7</recordid><startdate>19870701</startdate><enddate>19870701</enddate><creator>Foias, C.</creator><creator>Manley, O. P.</creator><creator>Teman, R.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19870701</creationdate><title>Self‐similar invariant families of turbulent flows</title><author>Foias, C. ; Manley, O. P. ; Teman, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-60f7d718b837087f5a4646d08658ece571e8364f4a91027c7a8030d32d8e14433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foias, C.</creatorcontrib><creatorcontrib>Manley, O. P.</creatorcontrib><creatorcontrib>Teman, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Physics of fluids (1958)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foias, C.</au><au>Manley, O. P.</au><au>Teman, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self‐similar invariant families of turbulent flows</atitle><jtitle>The Physics of fluids (1958)</jtitle><date>1987-07-01</date><risdate>1987</risdate><volume>30</volume><issue>7</issue><spage>2007</spage><epage>2020</epage><pages>2007-2020</pages><issn>0031-9171</issn><eissn>2163-4998</eissn><coden>PFLDAS</coden><abstract>Some physically significant consequences of recent advances in the theory of homogeneous statistical solutions of Navier–Stokes equations are presented. Invariance properties of families of those solutions are discussed and used to derive rigorously certain previously conjectured results, e.g., the Kolmogorov spectrum. Others include a reinterpretation of the von Karman–Howarth–Dryden equation that leads to the conditions for the existence of an inertial subrange. Further an application of Poincaré’s inequality produces a different view of intermittency. It is also suggested how a measurement of the two‐point triple velocity correlation could yield an accurate value of Kolmogorov’s constant.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.866215</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9171
ispartof The Physics of fluids (1958), 1987-07, Vol.30 (7), p.2007-2020
issn 0031-9171
2163-4998
language eng
recordid cdi_scitation_primary_10_1063_1_866215
source Alma/SFX Local Collection
subjects Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Physics
Turbulent flows, convection, and heat transfer
title Self‐similar invariant families of turbulent flows
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A12%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%E2%80%90similar%20invariant%20families%20of%20turbulent%20flows&rft.jtitle=The%20Physics%20of%20fluids%20(1958)&rft.au=Foias,%20C.&rft.date=1987-07-01&rft.volume=30&rft.issue=7&rft.spage=2007&rft.epage=2020&rft.pages=2007-2020&rft.issn=0031-9171&rft.eissn=2163-4998&rft.coden=PFLDAS&rft_id=info:doi/10.1063/1.866215&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_866215%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c256t-60f7d718b837087f5a4646d08658ece571e8364f4a91027c7a8030d32d8e14433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true