Loading…
Two-dimensional effects in a tunnel ionized plasma
An intense short pulse laser of finite spot size propagating through a gas produces plasma via tunnel ionization on a femtosecond time scale. The radial profile of plasma density is strongly peaked on the axis and has a defocusing property. As electron density grows with time, the trailing part of t...
Saved in:
Published in: | Physics of plasmas 1997-08, Vol.4 (8), p.3040-3042 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An intense short pulse laser of finite spot size propagating through a gas produces plasma via tunnel ionization on a femtosecond time scale. The radial profile of plasma density is strongly peaked on the axis and has a defocusing property. As electron density grows with time, the trailing part of the laser pulse suffers stronger divergence than the leading front, causing severe temporal distortion of the pulse. A self-consistent paraxial ray theory of electron density evolution and defocusing of the laser reveals that a square (in time) laser pulse, after propagating one Rayleigh length, has an order of magnitude difference in the axial intensity at the front and the tail of the pulse. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/1.872438 |