Loading…
A theoretical study of the time-resolved x-ray absorption spectrum of the photoionized BT-1T cation
The time-resolved x-ray absorption spectrum of the BT-1T cation (BT-1T+) is theoretically simulated in order to investigate the charge transfer reaction of the system. We employ both trajectory surface hopping and quantum dynamics to simulate the structural evolution over time and the changes in the...
Saved in:
Published in: | Structural dynamics (Melville, N.Y.) N.Y.), 2023-05, Vol.10 (3), p.034102-034102 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-cfa24e7da7f89fd08d4cb6931e2e0ed4aa5d2d3e48d2222f1ae2eaf868f63f903 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-cfa24e7da7f89fd08d4cb6931e2e0ed4aa5d2d3e48d2222f1ae2eaf868f63f903 |
container_end_page | 034102 |
container_issue | 3 |
container_start_page | 034102 |
container_title | Structural dynamics (Melville, N.Y.) |
container_volume | 10 |
creator | Schnack-Petersen, Anna Kristina Pápai, Mátyás Coriani, Sonia Møller, Klaus Braagaard |
description | The time-resolved x-ray absorption spectrum of the BT-1T cation (BT-1T+) is theoretically simulated in order to investigate the charge transfer reaction of the system. We employ both trajectory surface hopping and quantum dynamics to simulate the structural evolution over time and the changes in the state populations. To compute the static x-ray absorption spectra (XAS) of the ground and excited states, we apply both the time-dependent density functional theory and the coupled cluster singles and doubles method. The results obtained are in good agreement between the methods. It is, furthermore, found that the small structural changes that occur during the reaction have little effect on the static XAS. Hence, the tr-XAS can be computed based on the state populations determined from a nuclear dynamics simulation and one set of static XAS calculations, utilizing the ground state optimized geometry. This approach can save considerable computational resources, as the static spectra need not to be calculated for all geometries. As BT-1T is a relatively rigid molecule, the outlined approach should only be considered when investigating non-radiative decay processes in the vicinity of the Franck–Condon point. |
doi_str_mv | 10.1063/4.0000183 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_4_0000183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2820969484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-cfa24e7da7f89fd08d4cb6931e2e0ed4aa5d2d3e48d2222f1ae2eaf868f63f903</originalsourceid><addsrcrecordid>eNp90UtP3DAQAGALFRVEOfAHqki9tEgBv5I4p4qiviQkLsvZ8tpj1iiJg-2suv31ddiFUiQ6F1ueT6PxDEInBJ8RXLNzfoZzEMH20CFltC2bphFvnt0P0HGMd7MhtGo4e4sOWEMr3Fb0EOmLIq3AB0hOq66IaTKbwtv5sUiuhzJA9N0aTPGrDGpTqGX0YUzOD0UcQacw9Y98XPnkc8L9zvrLoiSLQqtZvkP7VnURjnfnEbr59nVx-aO8uv7-8_LiqtS84anUVlEOjVGNFa01WBiul3XLCFDAYLhSlaGGAReG5rBE5YSyoha2ZrbF7Ah93tYdp2UPRsOQgurkGFyvwkZ65eS_mcGt5K1fS4Ip5XlSucLHXYXg7yeISfYuaug6NYCfoqSC4rZuueCZfnhB7_wUhvy_WRHOqpbQrD5tlQ4-xgD2qRuC5bw-yeVufdm-f97-k3xcVganWxC1Sw-T_W-1V_Hah79QjsayP3v6sg4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821435912</pqid></control><display><type>article</type><title>A theoretical study of the time-resolved x-ray absorption spectrum of the photoionized BT-1T cation</title><source>Publicly Available Content Database</source><source>AIP Open Access Journals</source><source>PubMed Central</source><creator>Schnack-Petersen, Anna Kristina ; Pápai, Mátyás ; Coriani, Sonia ; Møller, Klaus Braagaard</creator><creatorcontrib>Schnack-Petersen, Anna Kristina ; Pápai, Mátyás ; Coriani, Sonia ; Møller, Klaus Braagaard</creatorcontrib><description>The time-resolved x-ray absorption spectrum of the BT-1T cation (BT-1T+) is theoretically simulated in order to investigate the charge transfer reaction of the system. We employ both trajectory surface hopping and quantum dynamics to simulate the structural evolution over time and the changes in the state populations. To compute the static x-ray absorption spectra (XAS) of the ground and excited states, we apply both the time-dependent density functional theory and the coupled cluster singles and doubles method. The results obtained are in good agreement between the methods. It is, furthermore, found that the small structural changes that occur during the reaction have little effect on the static XAS. Hence, the tr-XAS can be computed based on the state populations determined from a nuclear dynamics simulation and one set of static XAS calculations, utilizing the ground state optimized geometry. This approach can save considerable computational resources, as the static spectra need not to be calculated for all geometries. As BT-1T is a relatively rigid molecule, the outlined approach should only be considered when investigating non-radiative decay processes in the vicinity of the Franck–Condon point.</description><identifier>ISSN: 2329-7778</identifier><identifier>EISSN: 2329-7778</identifier><identifier>DOI: 10.1063/4.0000183</identifier><identifier>PMID: 37250952</identifier><identifier>CODEN: SDTYAE</identifier><language>eng</language><publisher>United States: American Institute of Physics, Inc</publisher><subject>Absorption spectra ; Approximation ; Cations ; Charge transfer ; Density functional theory ; Mathematical analysis ; Photoionization ; Photovoltaic cells ; Populations ; Quantum theory ; Simulation ; Spectrum analysis ; Time dependence ; X ray absorption</subject><ispartof>Structural dynamics (Melville, N.Y.), 2023-05, Vol.10 (3), p.034102-034102</ispartof><rights>Author(s)</rights><rights>2023 Author(s).</rights><rights>2023 Author(s). This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Author(s). 2023 Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-cfa24e7da7f89fd08d4cb6931e2e0ed4aa5d2d3e48d2222f1ae2eaf868f63f903</citedby><cites>FETCH-LOGICAL-c474t-cfa24e7da7f89fd08d4cb6931e2e0ed4aa5d2d3e48d2222f1ae2eaf868f63f903</cites><orcidid>0000-0002-4487-897X ; 0000-0003-0652-8255 ; 0000-0002-4819-0611 ; 0000-0002-9797-7437</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2821435912/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2821435912?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27890,27924,27925,37012,37013,44590,53791,53793,75126,76408</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37250952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schnack-Petersen, Anna Kristina</creatorcontrib><creatorcontrib>Pápai, Mátyás</creatorcontrib><creatorcontrib>Coriani, Sonia</creatorcontrib><creatorcontrib>Møller, Klaus Braagaard</creatorcontrib><title>A theoretical study of the time-resolved x-ray absorption spectrum of the photoionized BT-1T cation</title><title>Structural dynamics (Melville, N.Y.)</title><addtitle>Struct Dyn</addtitle><description>The time-resolved x-ray absorption spectrum of the BT-1T cation (BT-1T+) is theoretically simulated in order to investigate the charge transfer reaction of the system. We employ both trajectory surface hopping and quantum dynamics to simulate the structural evolution over time and the changes in the state populations. To compute the static x-ray absorption spectra (XAS) of the ground and excited states, we apply both the time-dependent density functional theory and the coupled cluster singles and doubles method. The results obtained are in good agreement between the methods. It is, furthermore, found that the small structural changes that occur during the reaction have little effect on the static XAS. Hence, the tr-XAS can be computed based on the state populations determined from a nuclear dynamics simulation and one set of static XAS calculations, utilizing the ground state optimized geometry. This approach can save considerable computational resources, as the static spectra need not to be calculated for all geometries. As BT-1T is a relatively rigid molecule, the outlined approach should only be considered when investigating non-radiative decay processes in the vicinity of the Franck–Condon point.</description><subject>Absorption spectra</subject><subject>Approximation</subject><subject>Cations</subject><subject>Charge transfer</subject><subject>Density functional theory</subject><subject>Mathematical analysis</subject><subject>Photoionization</subject><subject>Photovoltaic cells</subject><subject>Populations</subject><subject>Quantum theory</subject><subject>Simulation</subject><subject>Spectrum analysis</subject><subject>Time dependence</subject><subject>X ray absorption</subject><issn>2329-7778</issn><issn>2329-7778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>PIMPY</sourceid><recordid>eNp90UtP3DAQAGALFRVEOfAHqki9tEgBv5I4p4qiviQkLsvZ8tpj1iiJg-2suv31ddiFUiQ6F1ueT6PxDEInBJ8RXLNzfoZzEMH20CFltC2bphFvnt0P0HGMd7MhtGo4e4sOWEMr3Fb0EOmLIq3AB0hOq66IaTKbwtv5sUiuhzJA9N0aTPGrDGpTqGX0YUzOD0UcQacw9Y98XPnkc8L9zvrLoiSLQqtZvkP7VnURjnfnEbr59nVx-aO8uv7-8_LiqtS84anUVlEOjVGNFa01WBiul3XLCFDAYLhSlaGGAReG5rBE5YSyoha2ZrbF7Ah93tYdp2UPRsOQgurkGFyvwkZ65eS_mcGt5K1fS4Ip5XlSucLHXYXg7yeISfYuaug6NYCfoqSC4rZuueCZfnhB7_wUhvy_WRHOqpbQrD5tlQ4-xgD2qRuC5bw-yeVufdm-f97-k3xcVganWxC1Sw-T_W-1V_Hah79QjsayP3v6sg4</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Schnack-Petersen, Anna Kristina</creator><creator>Pápai, Mátyás</creator><creator>Coriani, Sonia</creator><creator>Møller, Klaus Braagaard</creator><general>American Institute of Physics, Inc</general><general>American Crystallographic Association</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4487-897X</orcidid><orcidid>https://orcid.org/0000-0003-0652-8255</orcidid><orcidid>https://orcid.org/0000-0002-4819-0611</orcidid><orcidid>https://orcid.org/0000-0002-9797-7437</orcidid></search><sort><creationdate>20230501</creationdate><title>A theoretical study of the time-resolved x-ray absorption spectrum of the photoionized BT-1T cation</title><author>Schnack-Petersen, Anna Kristina ; Pápai, Mátyás ; Coriani, Sonia ; Møller, Klaus Braagaard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-cfa24e7da7f89fd08d4cb6931e2e0ed4aa5d2d3e48d2222f1ae2eaf868f63f903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption spectra</topic><topic>Approximation</topic><topic>Cations</topic><topic>Charge transfer</topic><topic>Density functional theory</topic><topic>Mathematical analysis</topic><topic>Photoionization</topic><topic>Photovoltaic cells</topic><topic>Populations</topic><topic>Quantum theory</topic><topic>Simulation</topic><topic>Spectrum analysis</topic><topic>Time dependence</topic><topic>X ray absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schnack-Petersen, Anna Kristina</creatorcontrib><creatorcontrib>Pápai, Mátyás</creatorcontrib><creatorcontrib>Coriani, Sonia</creatorcontrib><creatorcontrib>Møller, Klaus Braagaard</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Structural dynamics (Melville, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schnack-Petersen, Anna Kristina</au><au>Pápai, Mátyás</au><au>Coriani, Sonia</au><au>Møller, Klaus Braagaard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A theoretical study of the time-resolved x-ray absorption spectrum of the photoionized BT-1T cation</atitle><jtitle>Structural dynamics (Melville, N.Y.)</jtitle><addtitle>Struct Dyn</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>10</volume><issue>3</issue><spage>034102</spage><epage>034102</epage><pages>034102-034102</pages><issn>2329-7778</issn><eissn>2329-7778</eissn><coden>SDTYAE</coden><abstract>The time-resolved x-ray absorption spectrum of the BT-1T cation (BT-1T+) is theoretically simulated in order to investigate the charge transfer reaction of the system. We employ both trajectory surface hopping and quantum dynamics to simulate the structural evolution over time and the changes in the state populations. To compute the static x-ray absorption spectra (XAS) of the ground and excited states, we apply both the time-dependent density functional theory and the coupled cluster singles and doubles method. The results obtained are in good agreement between the methods. It is, furthermore, found that the small structural changes that occur during the reaction have little effect on the static XAS. Hence, the tr-XAS can be computed based on the state populations determined from a nuclear dynamics simulation and one set of static XAS calculations, utilizing the ground state optimized geometry. This approach can save considerable computational resources, as the static spectra need not to be calculated for all geometries. As BT-1T is a relatively rigid molecule, the outlined approach should only be considered when investigating non-radiative decay processes in the vicinity of the Franck–Condon point.</abstract><cop>United States</cop><pub>American Institute of Physics, Inc</pub><pmid>37250952</pmid><doi>10.1063/4.0000183</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4487-897X</orcidid><orcidid>https://orcid.org/0000-0003-0652-8255</orcidid><orcidid>https://orcid.org/0000-0002-4819-0611</orcidid><orcidid>https://orcid.org/0000-0002-9797-7437</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2329-7778 |
ispartof | Structural dynamics (Melville, N.Y.), 2023-05, Vol.10 (3), p.034102-034102 |
issn | 2329-7778 2329-7778 |
language | eng |
recordid | cdi_scitation_primary_10_1063_4_0000183 |
source | Publicly Available Content Database; AIP Open Access Journals; PubMed Central |
subjects | Absorption spectra Approximation Cations Charge transfer Density functional theory Mathematical analysis Photoionization Photovoltaic cells Populations Quantum theory Simulation Spectrum analysis Time dependence X ray absorption |
title | A theoretical study of the time-resolved x-ray absorption spectrum of the photoionized BT-1T cation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20theoretical%20study%20of%20the%20time-resolved%20x-ray%20absorption%20spectrum%20of%20the%20photoionized%20BT-1T%20cation&rft.jtitle=Structural%20dynamics%20(Melville,%20N.Y.)&rft.au=Schnack-Petersen,%20Anna%20Kristina&rft.date=2023-05-01&rft.volume=10&rft.issue=3&rft.spage=034102&rft.epage=034102&rft.pages=034102-034102&rft.issn=2329-7778&rft.eissn=2329-7778&rft.coden=SDTYAE&rft_id=info:doi/10.1063/4.0000183&rft_dat=%3Cproquest_scita%3E2820969484%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-cfa24e7da7f89fd08d4cb6931e2e0ed4aa5d2d3e48d2222f1ae2eaf868f63f903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2821435912&rft_id=info:pmid/37250952&rfr_iscdi=true |