Loading…
High energy electron diffraction instrument with tunable camera length
Ultrafast electron diffraction (UED) stands as a powerful technique for real-time observation of structural dynamics at the atomic level. In recent years, the use of MeV electrons from radio frequency guns has been widely adopted to take advantage of the relativistic suppression of the space charge...
Saved in:
Published in: | Structural dynamics (Melville, N.Y.) N.Y.), 2024-03, Vol.11 (2), p.024302-024302 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c492t-33af564bff89365c6b29b5de127f8f7e06a46bbe8adf28c73d3de1fe59407b4e3 |
container_end_page | 024302 |
container_issue | 2 |
container_start_page | 024302 |
container_title | Structural dynamics (Melville, N.Y.) |
container_volume | 11 |
creator | Denham, P. Yang, Y. Guo, V. Fisher, A. Shen, X. Xu, T. England, R. J. Li, R. K. Musumeci, P. |
description | Ultrafast electron diffraction (UED) stands as a powerful technique for real-time observation of structural dynamics at the atomic level. In recent years, the use of MeV electrons from radio frequency guns has been widely adopted to take advantage of the relativistic suppression of the space charge effects that otherwise limit the temporal resolution of the technique. Nevertheless, there is not a clear choice for the optimal energy for a UED instrument. Scaling to beam energies higher than a few MeV does pose significant technical challenges, mainly related to the inherent increase in diffraction camera length associated with the smaller Bragg angles. In this study, we report a solution by using a compact post-sample magnetic optical system to magnify the diffraction pattern from a crystal Au sample illuminated by an 8.2 MeV electron beam. Our method employs, as one of the lenses of the optical system, a triplet of compact, high field gradients (>500 T/m), small-gap (3.5 mm) Halbach permanent magnet quadrupoles. Shifting the relative position of the quadrupoles, we demonstrate tuning the magnification by more than a factor of two, a 6× improvement in camera length, and reciprocal space resolution better than 0.1 Å−1 in agreement with beam transport simulations. |
doi_str_mv | 10.1063/4.0000240 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_4_0000240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d1fa517167ac424cb60bf98291cf58c6</doaj_id><sourcerecordid>3003435648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-33af564bff89365c6b29b5de127f8f7e06a46bbe8adf28c73d3de1fe59407b4e3</originalsourceid><addsrcrecordid>eNp9ks9vFSEQgDdGY5vag_-A2ehFm7zKr4XlZExjbZMmXvRMgB12edkHFVhN_3t57rNpe5ALhPnyMTNM07zG6BwjTj-yc1QXYehZc0wokRshRP_8wfmoOc15WxmMSScYfdkc0b6rUcKOm8srP04tBEjjXQsz2JJiaAfvXNK2-Hr2IZe07CCU9rcvU1uWoM0MrdU7SLqdIYxletW8cHrOcHrYT5ofl1--X1xtbr59vb74fLOxTJKyoVS7jjPjXC8p7yw3RJpuAEyE650AxDXjxkCvB0d6K-hAa9BBJxkShgE9aa5X7xD1Vt0mv9PpTkXt1d-LmEalU_F2BjVgpzssMBfaMsKs4cg42ROJret6y6vr0-q6XcwOBlsrTHp-JH0cCX5SY_ylMJK8I0xUw9vVEHPxKltfwE42hlDbqAiVvEd76P3hmRR_LpCL2vlsYZ51gLhkRRGijNau9BV99wTdxiWF2tBKESGZYLyr1IeVsinmnMDdp4yR2o-EYuowEpV987DGe_LfAFTgbAX22ev9h__H9geaq712</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3027947465</pqid></control><display><type>article</type><title>High energy electron diffraction instrument with tunable camera length</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>AIP Open Access Journals</source><creator>Denham, P. ; Yang, Y. ; Guo, V. ; Fisher, A. ; Shen, X. ; Xu, T. ; England, R. J. ; Li, R. K. ; Musumeci, P.</creator><creatorcontrib>Denham, P. ; Yang, Y. ; Guo, V. ; Fisher, A. ; Shen, X. ; Xu, T. ; England, R. J. ; Li, R. K. ; Musumeci, P. ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>Ultrafast electron diffraction (UED) stands as a powerful technique for real-time observation of structural dynamics at the atomic level. In recent years, the use of MeV electrons from radio frequency guns has been widely adopted to take advantage of the relativistic suppression of the space charge effects that otherwise limit the temporal resolution of the technique. Nevertheless, there is not a clear choice for the optimal energy for a UED instrument. Scaling to beam energies higher than a few MeV does pose significant technical challenges, mainly related to the inherent increase in diffraction camera length associated with the smaller Bragg angles. In this study, we report a solution by using a compact post-sample magnetic optical system to magnify the diffraction pattern from a crystal Au sample illuminated by an 8.2 MeV electron beam. Our method employs, as one of the lenses of the optical system, a triplet of compact, high field gradients (>500 T/m), small-gap (3.5 mm) Halbach permanent magnet quadrupoles. Shifting the relative position of the quadrupoles, we demonstrate tuning the magnification by more than a factor of two, a 6× improvement in camera length, and reciprocal space resolution better than 0.1 Å−1 in agreement with beam transport simulations.</description><identifier>ISSN: 2329-7778</identifier><identifier>EISSN: 2329-7778</identifier><identifier>DOI: 10.1063/4.0000240</identifier><identifier>PMID: 38532924</identifier><identifier>CODEN: SDTYAE</identifier><language>eng</language><publisher>United States: American Institute of Physics, Inc</publisher><subject>Approximation ; Cameras ; crystal lattices ; Diffraction patterns ; electromagnetism ; Electron beams ; Electron diffraction ; Electrons ; Energy ; Experiments ; High energy electrons ; lenses ; Magnetic lenses ; Optics ; Optimization ; OTHER INSTRUMENTATION ; particle beam optics ; particle beam transport ; Permanent magnets ; Phase transitions ; Quadrupoles ; Sensors ; Space charge ; Telescopes ; Temporal resolution ; Triplets ; ultrafast electron diffraction</subject><ispartof>Structural dynamics (Melville, N.Y.), 2024-03, Vol.11 (2), p.024302-024302</ispartof><rights>Author(s)</rights><rights>2024 Author(s).</rights><rights>2024 Author(s). This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Author(s). 2024 Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c492t-33af564bff89365c6b29b5de127f8f7e06a46bbe8adf28c73d3de1fe59407b4e3</cites><orcidid>0000-0001-8218-7347 ; 0009-0008-2654-6526 ; 0000-0003-3985-7274 ; 0000-0003-4093-0213 ; 0000-0002-6844-608X ; 0009-0000-2982-7464 ; 0000-0002-4977-7561 ; 0009-0008-4954-0151 ; 0009000029827464 ; 0000000182187347 ; 000000026844608X ; 0000000249777561 ; 0009000849540151 ; 0009000826546526 ; 0000000340930213 ; 0000000339857274</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3027947465/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3027947465?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27867,27901,27902,36989,36990,44566,53766,53768,75096,76377</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38532924$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2396807$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Denham, P.</creatorcontrib><creatorcontrib>Yang, Y.</creatorcontrib><creatorcontrib>Guo, V.</creatorcontrib><creatorcontrib>Fisher, A.</creatorcontrib><creatorcontrib>Shen, X.</creatorcontrib><creatorcontrib>Xu, T.</creatorcontrib><creatorcontrib>England, R. J.</creatorcontrib><creatorcontrib>Li, R. K.</creatorcontrib><creatorcontrib>Musumeci, P.</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>High energy electron diffraction instrument with tunable camera length</title><title>Structural dynamics (Melville, N.Y.)</title><addtitle>Struct Dyn</addtitle><description>Ultrafast electron diffraction (UED) stands as a powerful technique for real-time observation of structural dynamics at the atomic level. In recent years, the use of MeV electrons from radio frequency guns has been widely adopted to take advantage of the relativistic suppression of the space charge effects that otherwise limit the temporal resolution of the technique. Nevertheless, there is not a clear choice for the optimal energy for a UED instrument. Scaling to beam energies higher than a few MeV does pose significant technical challenges, mainly related to the inherent increase in diffraction camera length associated with the smaller Bragg angles. In this study, we report a solution by using a compact post-sample magnetic optical system to magnify the diffraction pattern from a crystal Au sample illuminated by an 8.2 MeV electron beam. Our method employs, as one of the lenses of the optical system, a triplet of compact, high field gradients (>500 T/m), small-gap (3.5 mm) Halbach permanent magnet quadrupoles. Shifting the relative position of the quadrupoles, we demonstrate tuning the magnification by more than a factor of two, a 6× improvement in camera length, and reciprocal space resolution better than 0.1 Å−1 in agreement with beam transport simulations.</description><subject>Approximation</subject><subject>Cameras</subject><subject>crystal lattices</subject><subject>Diffraction patterns</subject><subject>electromagnetism</subject><subject>Electron beams</subject><subject>Electron diffraction</subject><subject>Electrons</subject><subject>Energy</subject><subject>Experiments</subject><subject>High energy electrons</subject><subject>lenses</subject><subject>Magnetic lenses</subject><subject>Optics</subject><subject>Optimization</subject><subject>OTHER INSTRUMENTATION</subject><subject>particle beam optics</subject><subject>particle beam transport</subject><subject>Permanent magnets</subject><subject>Phase transitions</subject><subject>Quadrupoles</subject><subject>Sensors</subject><subject>Space charge</subject><subject>Telescopes</subject><subject>Temporal resolution</subject><subject>Triplets</subject><subject>ultrafast electron diffraction</subject><issn>2329-7778</issn><issn>2329-7778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks9vFSEQgDdGY5vag_-A2ehFm7zKr4XlZExjbZMmXvRMgB12edkHFVhN_3t57rNpe5ALhPnyMTNM07zG6BwjTj-yc1QXYehZc0wokRshRP_8wfmoOc15WxmMSScYfdkc0b6rUcKOm8srP04tBEjjXQsz2JJiaAfvXNK2-Hr2IZe07CCU9rcvU1uWoM0MrdU7SLqdIYxletW8cHrOcHrYT5ofl1--X1xtbr59vb74fLOxTJKyoVS7jjPjXC8p7yw3RJpuAEyE650AxDXjxkCvB0d6K-hAa9BBJxkShgE9aa5X7xD1Vt0mv9PpTkXt1d-LmEalU_F2BjVgpzssMBfaMsKs4cg42ROJret6y6vr0-q6XcwOBlsrTHp-JH0cCX5SY_ylMJK8I0xUw9vVEHPxKltfwE42hlDbqAiVvEd76P3hmRR_LpCL2vlsYZ51gLhkRRGijNau9BV99wTdxiWF2tBKESGZYLyr1IeVsinmnMDdp4yR2o-EYuowEpV987DGe_LfAFTgbAX22ev9h__H9geaq712</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Denham, P.</creator><creator>Yang, Y.</creator><creator>Guo, V.</creator><creator>Fisher, A.</creator><creator>Shen, X.</creator><creator>Xu, T.</creator><creator>England, R. J.</creator><creator>Li, R. K.</creator><creator>Musumeci, P.</creator><general>American Institute of Physics, Inc</general><general>American Crystallographic Association/AIP</general><general>American Crystallographic Association</general><general>AIP Publishing LLC and ACA</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8218-7347</orcidid><orcidid>https://orcid.org/0009-0008-2654-6526</orcidid><orcidid>https://orcid.org/0000-0003-3985-7274</orcidid><orcidid>https://orcid.org/0000-0003-4093-0213</orcidid><orcidid>https://orcid.org/0000-0002-6844-608X</orcidid><orcidid>https://orcid.org/0009-0000-2982-7464</orcidid><orcidid>https://orcid.org/0000-0002-4977-7561</orcidid><orcidid>https://orcid.org/0009-0008-4954-0151</orcidid><orcidid>https://orcid.org/0009000029827464</orcidid><orcidid>https://orcid.org/0000000182187347</orcidid><orcidid>https://orcid.org/000000026844608X</orcidid><orcidid>https://orcid.org/0000000249777561</orcidid><orcidid>https://orcid.org/0009000849540151</orcidid><orcidid>https://orcid.org/0009000826546526</orcidid><orcidid>https://orcid.org/0000000340930213</orcidid><orcidid>https://orcid.org/0000000339857274</orcidid></search><sort><creationdate>20240301</creationdate><title>High energy electron diffraction instrument with tunable camera length</title><author>Denham, P. ; Yang, Y. ; Guo, V. ; Fisher, A. ; Shen, X. ; Xu, T. ; England, R. J. ; Li, R. K. ; Musumeci, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-33af564bff89365c6b29b5de127f8f7e06a46bbe8adf28c73d3de1fe59407b4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Cameras</topic><topic>crystal lattices</topic><topic>Diffraction patterns</topic><topic>electromagnetism</topic><topic>Electron beams</topic><topic>Electron diffraction</topic><topic>Electrons</topic><topic>Energy</topic><topic>Experiments</topic><topic>High energy electrons</topic><topic>lenses</topic><topic>Magnetic lenses</topic><topic>Optics</topic><topic>Optimization</topic><topic>OTHER INSTRUMENTATION</topic><topic>particle beam optics</topic><topic>particle beam transport</topic><topic>Permanent magnets</topic><topic>Phase transitions</topic><topic>Quadrupoles</topic><topic>Sensors</topic><topic>Space charge</topic><topic>Telescopes</topic><topic>Temporal resolution</topic><topic>Triplets</topic><topic>ultrafast electron diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Denham, P.</creatorcontrib><creatorcontrib>Yang, Y.</creatorcontrib><creatorcontrib>Guo, V.</creatorcontrib><creatorcontrib>Fisher, A.</creatorcontrib><creatorcontrib>Shen, X.</creatorcontrib><creatorcontrib>Xu, T.</creatorcontrib><creatorcontrib>England, R. J.</creatorcontrib><creatorcontrib>Li, R. K.</creatorcontrib><creatorcontrib>Musumeci, P.</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Structural dynamics (Melville, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Denham, P.</au><au>Yang, Y.</au><au>Guo, V.</au><au>Fisher, A.</au><au>Shen, X.</au><au>Xu, T.</au><au>England, R. J.</au><au>Li, R. K.</au><au>Musumeci, P.</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High energy electron diffraction instrument with tunable camera length</atitle><jtitle>Structural dynamics (Melville, N.Y.)</jtitle><addtitle>Struct Dyn</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>11</volume><issue>2</issue><spage>024302</spage><epage>024302</epage><pages>024302-024302</pages><issn>2329-7778</issn><eissn>2329-7778</eissn><coden>SDTYAE</coden><abstract>Ultrafast electron diffraction (UED) stands as a powerful technique for real-time observation of structural dynamics at the atomic level. In recent years, the use of MeV electrons from radio frequency guns has been widely adopted to take advantage of the relativistic suppression of the space charge effects that otherwise limit the temporal resolution of the technique. Nevertheless, there is not a clear choice for the optimal energy for a UED instrument. Scaling to beam energies higher than a few MeV does pose significant technical challenges, mainly related to the inherent increase in diffraction camera length associated with the smaller Bragg angles. In this study, we report a solution by using a compact post-sample magnetic optical system to magnify the diffraction pattern from a crystal Au sample illuminated by an 8.2 MeV electron beam. Our method employs, as one of the lenses of the optical system, a triplet of compact, high field gradients (>500 T/m), small-gap (3.5 mm) Halbach permanent magnet quadrupoles. Shifting the relative position of the quadrupoles, we demonstrate tuning the magnification by more than a factor of two, a 6× improvement in camera length, and reciprocal space resolution better than 0.1 Å−1 in agreement with beam transport simulations.</abstract><cop>United States</cop><pub>American Institute of Physics, Inc</pub><pmid>38532924</pmid><doi>10.1063/4.0000240</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8218-7347</orcidid><orcidid>https://orcid.org/0009-0008-2654-6526</orcidid><orcidid>https://orcid.org/0000-0003-3985-7274</orcidid><orcidid>https://orcid.org/0000-0003-4093-0213</orcidid><orcidid>https://orcid.org/0000-0002-6844-608X</orcidid><orcidid>https://orcid.org/0009-0000-2982-7464</orcidid><orcidid>https://orcid.org/0000-0002-4977-7561</orcidid><orcidid>https://orcid.org/0009-0008-4954-0151</orcidid><orcidid>https://orcid.org/0009000029827464</orcidid><orcidid>https://orcid.org/0000000182187347</orcidid><orcidid>https://orcid.org/000000026844608X</orcidid><orcidid>https://orcid.org/0000000249777561</orcidid><orcidid>https://orcid.org/0009000849540151</orcidid><orcidid>https://orcid.org/0009000826546526</orcidid><orcidid>https://orcid.org/0000000340930213</orcidid><orcidid>https://orcid.org/0000000339857274</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2329-7778 |
ispartof | Structural dynamics (Melville, N.Y.), 2024-03, Vol.11 (2), p.024302-024302 |
issn | 2329-7778 2329-7778 |
language | eng |
recordid | cdi_scitation_primary_10_1063_4_0000240 |
source | Open Access: PubMed Central; Publicly Available Content Database; AIP Open Access Journals |
subjects | Approximation Cameras crystal lattices Diffraction patterns electromagnetism Electron beams Electron diffraction Electrons Energy Experiments High energy electrons lenses Magnetic lenses Optics Optimization OTHER INSTRUMENTATION particle beam optics particle beam transport Permanent magnets Phase transitions Quadrupoles Sensors Space charge Telescopes Temporal resolution Triplets ultrafast electron diffraction |
title | High energy electron diffraction instrument with tunable camera length |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T23%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20energy%20electron%20diffraction%20instrument%20with%20tunable%20camera%20length&rft.jtitle=Structural%20dynamics%20(Melville,%20N.Y.)&rft.au=Denham,%20P.&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2024-03-01&rft.volume=11&rft.issue=2&rft.spage=024302&rft.epage=024302&rft.pages=024302-024302&rft.issn=2329-7778&rft.eissn=2329-7778&rft.coden=SDTYAE&rft_id=info:doi/10.1063/4.0000240&rft_dat=%3Cproquest_scita%3E3003435648%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-33af564bff89365c6b29b5de127f8f7e06a46bbe8adf28c73d3de1fe59407b4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3027947465&rft_id=info:pmid/38532924&rfr_iscdi=true |