Loading…

Excitonic effects on photophysical processes of polymeric carbon nitride

Recently, polymeric carbon nitride (nominally, g-C3N4) has attracted extensive attention due to its photoresponsive applications such as photocatalysis, photoluminescence, and photoelectrochemistry. Due to unique compositions and structures, strong excitonic effects of g-C3N4 network derived from lo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2020-05, Vol.127 (17)
Main Authors: Li, Yuanjin, Jin, Sen, Xu, Xiaoliang, Wang, Hui, Zhang, Xiaodong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recently, polymeric carbon nitride (nominally, g-C3N4) has attracted extensive attention due to its photoresponsive applications such as photocatalysis, photoluminescence, and photoelectrochemistry. Due to unique compositions and structures, strong excitonic effects of g-C3N4 network derived from low dielectric property have led to complicated photophysical processes. Studying exciton-related photophysical processes in g-C3N4 is of great significance for gaining in-depth understandings of the relationship between excitonic effects and photoresponsive behaviors. In this Perspective, we highlight the impacts of excitonic effects on photophysical processes of g-C3N4, in which excitonic behaviors like excitation, recombination, nonradiative relaxation, and annihilation are summed up. In addition, the key role of excitonic regulation in optimizing photoresponsive properties of g-C3N4 is also summarized, where the relevance between different photoinduced species and structural factors is emphasized. This Perspective will present a comprehensive understanding of excitonic effects-dominated photophysical processes of g-C3N4 and pave a new way for the design of novel photoresponsive polymeric semiconductors with strong excitonic effects.
ISSN:0021-8979
1089-7550
DOI:10.1063/5.0005825