Loading…

Focused acoustic vortex generated by a circular array of planar sector transducers using an acoustic lens, and its application in object manipulation

For enhanced energy utilization with improved flexibility and capability for object manipulation, a focused acoustic vortex (FAV) is devised by installing a spherical acoustic lens on a circular array of planar sector transducers. Based on the acoustic refraction of a concave spherical acoustic lens...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2020-08, Vol.128 (8)
Main Authors: Zhou, Chenchen, Wang, Qingdong, Pu, Shifu, Li, Yuzhi, Guo, Gepu, Chu, Hongyan, Ma, Qingyu, Tu, Juan, Zhang, Dong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For enhanced energy utilization with improved flexibility and capability for object manipulation, a focused acoustic vortex (FAV) is devised by installing a spherical acoustic lens on a circular array of planar sector transducers. Based on the acoustic refraction of a concave spherical acoustic lens, numerical simulations show that an FAV with considerable pressure gain and strengthened acoustic gradient force (AGF) can be produced by the effective concentration of acoustic waves. The performance of rotational object trapping is shown by the axial and radial distributions of the AGF for FAVs of different orders. Elastic objects of nanometer, micrometer, millimeter, and even larger-than-wavelength size can be captured with the trapping radius determined by the topological charge. With the established 16-channel experimental system, FAVs of different orders are verified by their clear pressure circles and phase spirals. The trapping radius and rotation speed of object capture are demonstrated using polyethylene particles of various sizes and FAVs of different orders. The favorable results provide an experimentally applicable method of FAV generation using the simplified circular transducer array to accomplish more accurate, stable, and flexible object manipulations with strengthened AGFs. Also, FAVs could offer an efficient means of high-intensity focused ultrasound therapy to improve the therapeutic effect of tumor treatments by accumulating drug particles, thereby enabling more potential applications in clinical practice.
ISSN:0021-8979
1089-7550
DOI:10.1063/5.0006703