Loading…
Quantification of MagLIF morphology using the Mallat scattering transformation
The morphology of the stagnated plasma resulting from magnetized liner inertial fusion is measured by imaging the self-emission x rays coming from the multi-keV plasma. Equivalent diagnostic responses can be generated by integrated radiation-magnetohydrodynamic (rad-MHD) simulations from programs su...
Saved in:
Published in: | Physics of plasmas 2020-11, Vol.27 (11) |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The morphology of the stagnated plasma resulting from magnetized liner inertial fusion is measured by imaging the self-emission x rays coming from the multi-keV plasma. Equivalent diagnostic responses can be generated by integrated radiation-magnetohydrodynamic (rad-MHD) simulations from programs such as HYDRA and GORGON. There have been only limited quantitative ways to compare the image morphology, that is the texture, of simulations and experiments. We have developed a metric of image morphology based on the Mallat scattering transformation (MST), a transformation that has proved to be effective at distinguishing textures, sounds, and written characters. This metric is designed, demonstrated, and refined by classifying ensembles (i.e., classes) of synthetic stagnation images and by regressing an ensemble of synthetic stagnation images to the morphology (i.e., model) parameters used to generate the synthetic images. We use this metric to quantitatively compare simulations to experimental images, experimental images to each other, and to estimate the morphological parameters of the experimental images with uncertainty. This coordinate space has proved to be very adept at doing a sophisticated relative background subtraction in the MST space. This was needed to compare the experimental self-emission images to the rad-MHD simulation images. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/5.0010781 |