Loading…
Vanadium gate-controlled Josephson half-wave nanorectifier
Recently, the possibility to tune the critical current of conventional metallic superconductors via electrostatic gating was shown in wires, Josephson weak-links, and superconductor-normal metal–superconductor junctions. Here, we exploit such a technique to demonstrate a gate-controlled vanadium-bas...
Saved in:
Published in: | Applied physics letters 2020-06, Vol.116 (25) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recently, the possibility to tune the critical current of conventional metallic superconductors via electrostatic gating was shown in wires, Josephson weak-links, and superconductor-normal metal–superconductor junctions. Here, we exploit such a technique to demonstrate a gate-controlled vanadium-based Dayem nano-bridge operated as a half-wave rectifier at 3 K. Our devices exploit the gate-driven modulation of the critical current of the Josephson junction and the resulting steep variation of its normal-state resistance, to convert an AC signal applied to the gate electrode into a DC one across the junction. All-metallic superconducting gated rectifiers could provide the enabling technology to realize tunable photon detectors and diodes useful for superconducting electronics circuitry. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0013512 |