Loading…

Flow behaviour of a model colloid-polymer mixture using mode-coupling theory

The nonlinear rheology of a model colloid-polymer mixture is investigated by considering a square-wellsystem (SWS). The dynamics of the system under a constant shear rate is theoretically simulated using the mode-coupling theory of glass transition (MCT) within integration through transientsframewor...

Full description

Saved in:
Bibliographic Details
Main Author: Priya, Madhu
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2265
creator Priya, Madhu
description The nonlinear rheology of a model colloid-polymer mixture is investigated by considering a square-wellsystem (SWS). The dynamics of the system under a constant shear rate is theoretically simulated using the mode-coupling theory of glass transition (MCT) within integration through transientsframework (ITT). The state of the SWS can be controlled by tuning three control parameters: packing fraction, attraction range and attraction strength. MCT predicts three distinct phases: liquid, repulsive glass, and attractive glass for the SWS based on these three parameters. Apart from regular liquid-glass transition lines, MCT also predicts higher-order singularities in the phase diagram. The current work discusses the stress-strain relationship and flowcurves around one such singularity called as swallow-tail singularity orA4 singularity. It is observed that though the density correlators have been observed to change around this singularity, there is no noticeable effect of this singularity on rheological properties of the SWS or colloid-polymer mixture.
doi_str_mv 10.1063/5.0016578
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0016578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457780532</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-cec83f92d6f2f2a0d66e5e82d76406b484b034d70213e80e337629e3eb5a57e73</originalsourceid><addsrcrecordid>eNp90M9LwzAUB_AgCs7pwf-g4E3IfEmapD3KcCoMvCh4C2n76jLSpabtdP-9nRt48_R48OH9-BJyzWDGQIk7OQNgSurshEyYlIxqxdQpmQDkKeWpeD8nF123BuC51tmELBc-fCUFruzWhSEmoU5s0oQKfVIG74OraBv8rsGYNO67HyImQ-c2H7-GlmFo_b7rVxji7pKc1dZ3eHWsU_K2eHidP9Hly-Pz_H5JWy5FT0ssM1HnvFI1r7mFSimUmPFKqxRUkWZpASKtNHAmMAMUQiueo8BCWqlRiym5OcxtY_gcsOvNerx9M640PJXjXyAFH9XtQXWl623vwsa00TU27gwDs0_LSHNM6z-8DfEPmraqxQ9U32qs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2457780532</pqid></control><display><type>conference_proceeding</type><title>Flow behaviour of a model colloid-polymer mixture using mode-coupling theory</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Priya, Madhu</creator><contributor>Yusuf, S. M. ; Sharma, Veerendra K. ; Prajapat, C. L.</contributor><creatorcontrib>Priya, Madhu ; Yusuf, S. M. ; Sharma, Veerendra K. ; Prajapat, C. L.</creatorcontrib><description>The nonlinear rheology of a model colloid-polymer mixture is investigated by considering a square-wellsystem (SWS). The dynamics of the system under a constant shear rate is theoretically simulated using the mode-coupling theory of glass transition (MCT) within integration through transientsframework (ITT). The state of the SWS can be controlled by tuning three control parameters: packing fraction, attraction range and attraction strength. MCT predicts three distinct phases: liquid, repulsive glass, and attractive glass for the SWS based on these three parameters. Apart from regular liquid-glass transition lines, MCT also predicts higher-order singularities in the phase diagram. The current work discusses the stress-strain relationship and flowcurves around one such singularity called as swallow-tail singularity orA4 singularity. It is observed that though the density correlators have been observed to change around this singularity, there is no noticeable effect of this singularity on rheological properties of the SWS or colloid-polymer mixture.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0016578</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Attraction ; Colloids ; Correlators ; Coupling ; Glass transition ; Mathematical models ; Parameters ; Phase diagrams ; Polymers ; Rheological properties ; Rheology ; Shear rate ; Singularities ; Stress-strain relationships</subject><ispartof>AIP conference proceedings, 2020, Vol.2265 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23910,23911,25119,27903,27904</link.rule.ids></links><search><contributor>Yusuf, S. M.</contributor><contributor>Sharma, Veerendra K.</contributor><contributor>Prajapat, C. L.</contributor><creatorcontrib>Priya, Madhu</creatorcontrib><title>Flow behaviour of a model colloid-polymer mixture using mode-coupling theory</title><title>AIP conference proceedings</title><description>The nonlinear rheology of a model colloid-polymer mixture is investigated by considering a square-wellsystem (SWS). The dynamics of the system under a constant shear rate is theoretically simulated using the mode-coupling theory of glass transition (MCT) within integration through transientsframework (ITT). The state of the SWS can be controlled by tuning three control parameters: packing fraction, attraction range and attraction strength. MCT predicts three distinct phases: liquid, repulsive glass, and attractive glass for the SWS based on these three parameters. Apart from regular liquid-glass transition lines, MCT also predicts higher-order singularities in the phase diagram. The current work discusses the stress-strain relationship and flowcurves around one such singularity called as swallow-tail singularity orA4 singularity. It is observed that though the density correlators have been observed to change around this singularity, there is no noticeable effect of this singularity on rheological properties of the SWS or colloid-polymer mixture.</description><subject>Attraction</subject><subject>Colloids</subject><subject>Correlators</subject><subject>Coupling</subject><subject>Glass transition</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Phase diagrams</subject><subject>Polymers</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Shear rate</subject><subject>Singularities</subject><subject>Stress-strain relationships</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90M9LwzAUB_AgCs7pwf-g4E3IfEmapD3KcCoMvCh4C2n76jLSpabtdP-9nRt48_R48OH9-BJyzWDGQIk7OQNgSurshEyYlIxqxdQpmQDkKeWpeD8nF123BuC51tmELBc-fCUFruzWhSEmoU5s0oQKfVIG74OraBv8rsGYNO67HyImQ-c2H7-GlmFo_b7rVxji7pKc1dZ3eHWsU_K2eHidP9Hly-Pz_H5JWy5FT0ssM1HnvFI1r7mFSimUmPFKqxRUkWZpASKtNHAmMAMUQiueo8BCWqlRiym5OcxtY_gcsOvNerx9M640PJXjXyAFH9XtQXWl623vwsa00TU27gwDs0_LSHNM6z-8DfEPmraqxQ9U32qs</recordid><startdate>20201105</startdate><enddate>20201105</enddate><creator>Priya, Madhu</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20201105</creationdate><title>Flow behaviour of a model colloid-polymer mixture using mode-coupling theory</title><author>Priya, Madhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-cec83f92d6f2f2a0d66e5e82d76406b484b034d70213e80e337629e3eb5a57e73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Attraction</topic><topic>Colloids</topic><topic>Correlators</topic><topic>Coupling</topic><topic>Glass transition</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Phase diagrams</topic><topic>Polymers</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Shear rate</topic><topic>Singularities</topic><topic>Stress-strain relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Priya, Madhu</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Priya, Madhu</au><au>Yusuf, S. M.</au><au>Sharma, Veerendra K.</au><au>Prajapat, C. L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Flow behaviour of a model colloid-polymer mixture using mode-coupling theory</atitle><btitle>AIP conference proceedings</btitle><date>2020-11-05</date><risdate>2020</risdate><volume>2265</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The nonlinear rheology of a model colloid-polymer mixture is investigated by considering a square-wellsystem (SWS). The dynamics of the system under a constant shear rate is theoretically simulated using the mode-coupling theory of glass transition (MCT) within integration through transientsframework (ITT). The state of the SWS can be controlled by tuning three control parameters: packing fraction, attraction range and attraction strength. MCT predicts three distinct phases: liquid, repulsive glass, and attractive glass for the SWS based on these three parameters. Apart from regular liquid-glass transition lines, MCT also predicts higher-order singularities in the phase diagram. The current work discusses the stress-strain relationship and flowcurves around one such singularity called as swallow-tail singularity orA4 singularity. It is observed that though the density correlators have been observed to change around this singularity, there is no noticeable effect of this singularity on rheological properties of the SWS or colloid-polymer mixture.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0016578</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2020, Vol.2265 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0016578
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Attraction
Colloids
Correlators
Coupling
Glass transition
Mathematical models
Parameters
Phase diagrams
Polymers
Rheological properties
Rheology
Shear rate
Singularities
Stress-strain relationships
title Flow behaviour of a model colloid-polymer mixture using mode-coupling theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A31%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Flow%20behaviour%20of%20a%20model%20colloid-polymer%20mixture%20using%20mode-coupling%20theory&rft.btitle=AIP%20conference%20proceedings&rft.au=Priya,%20Madhu&rft.date=2020-11-05&rft.volume=2265&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0016578&rft_dat=%3Cproquest_scita%3E2457780532%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p253t-cec83f92d6f2f2a0d66e5e82d76406b484b034d70213e80e337629e3eb5a57e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2457780532&rft_id=info:pmid/&rfr_iscdi=true