Loading…
Comparison of fuzzy time series forecasting model based on similarity measure concept with different types of interval length
Fuzzy time series forecasting model has been proposed to cater for data in linguistic values. One of the crucial factors that influence the performance of fuzzy time series is the partition of interval length. This paper compares the effect of several interval lengths to the performance of fuzzy tim...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c328t-22c7597fe9bc404c0d5d494aabcac6aa9587da0438eb4c092b8d512f1f2c33f13 |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2266 |
creator | Ramli, Nazirah Alam, Nik Muhammad Farhan Hakim Nik Badrul Mutalib, Siti Musleha Ab Mohamad, Daud |
description | Fuzzy time series forecasting model has been proposed to cater for data in linguistic values. One of the crucial factors that influence the performance of fuzzy time series is the partition of interval length. This paper compares the effect of several interval lengths to the performance of fuzzy time series forecasting model. The interval length considered are the average based, frequency density based and randomly chosen length methods. The data are represented in trapezoidal fuzzy numbers and the accuracy of the forecasting model is calculated using the distance, area, height and perimeter ratio similarity measure. The model is applied in a numerical example of Malaysian unemployment rate. The findings show that the average based length outperforms the other two types of interval length. |
doi_str_mv | 10.1063/5.0018091 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0018091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448715343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-22c7597fe9bc404c0d5d494aabcac6aa9587da0438eb4c092b8d512f1f2c33f13</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFYX_oMBd0LqPPNYSvEFBTcK7sJkcqedkmTizKSSgv_dSAvuXJ3F_e534CB0TcmCkpTfyQUhNCcFPUEzKiVNspSmp2hGSCESJvjHOboIYUsIK7Isn6HvpWt75W1wHXYGm2G_H3G0LeAA3kLAxnnQKkTbrXHramhwpQLUeOKDbW0z_cYRt6DC4AFr12noI_6ycYNrawx46CKOYz-pJr_tIvidanAD3TpuLtGZUU2Aq2PO0fvjw9vyOVm9Pr0s71eJ5iyPCWM6k0VmoKi0IEKTWtaiEEpVWulUqULmWa2I4DlU07VgVV5Lygw1THNuKJ-jm4O39-5zgBDLrRt8N1WWTIg8o5ILPlG3BypoG1W0rit7b1vlx5KS8nfeUpbHef-Dd87_gWVfG_4DZi1-TQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2448715343</pqid></control><display><type>conference_proceeding</type><title>Comparison of fuzzy time series forecasting model based on similarity measure concept with different types of interval length</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Ramli, Nazirah ; Alam, Nik Muhammad Farhan Hakim Nik Badrul ; Mutalib, Siti Musleha Ab ; Mohamad, Daud</creator><contributor>Ibrahim, Siti Nur Iqmal ; Lee, Lai Soon ; Ibrahim, Noor Akma ; Midi, Habshah ; Ismail, Fudziah ; Wahi, Nadihah ; Leong, Wah June</contributor><creatorcontrib>Ramli, Nazirah ; Alam, Nik Muhammad Farhan Hakim Nik Badrul ; Mutalib, Siti Musleha Ab ; Mohamad, Daud ; Ibrahim, Siti Nur Iqmal ; Lee, Lai Soon ; Ibrahim, Noor Akma ; Midi, Habshah ; Ismail, Fudziah ; Wahi, Nadihah ; Leong, Wah June</creatorcontrib><description>Fuzzy time series forecasting model has been proposed to cater for data in linguistic values. One of the crucial factors that influence the performance of fuzzy time series is the partition of interval length. This paper compares the effect of several interval lengths to the performance of fuzzy time series forecasting model. The interval length considered are the average based, frequency density based and randomly chosen length methods. The data are represented in trapezoidal fuzzy numbers and the accuracy of the forecasting model is calculated using the distance, area, height and perimeter ratio similarity measure. The model is applied in a numerical example of Malaysian unemployment rate. The findings show that the average based length outperforms the other two types of interval length.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0018091</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Forecasting ; Mathematical models ; Model accuracy ; Similarity ; Similarity measures ; Time series</subject><ispartof>AIP conference proceedings, 2020, Vol.2266 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-22c7597fe9bc404c0d5d494aabcac6aa9587da0438eb4c092b8d512f1f2c33f13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23921,23922,25131,27915,27916</link.rule.ids></links><search><contributor>Ibrahim, Siti Nur Iqmal</contributor><contributor>Lee, Lai Soon</contributor><contributor>Ibrahim, Noor Akma</contributor><contributor>Midi, Habshah</contributor><contributor>Ismail, Fudziah</contributor><contributor>Wahi, Nadihah</contributor><contributor>Leong, Wah June</contributor><creatorcontrib>Ramli, Nazirah</creatorcontrib><creatorcontrib>Alam, Nik Muhammad Farhan Hakim Nik Badrul</creatorcontrib><creatorcontrib>Mutalib, Siti Musleha Ab</creatorcontrib><creatorcontrib>Mohamad, Daud</creatorcontrib><title>Comparison of fuzzy time series forecasting model based on similarity measure concept with different types of interval length</title><title>AIP conference proceedings</title><description>Fuzzy time series forecasting model has been proposed to cater for data in linguistic values. One of the crucial factors that influence the performance of fuzzy time series is the partition of interval length. This paper compares the effect of several interval lengths to the performance of fuzzy time series forecasting model. The interval length considered are the average based, frequency density based and randomly chosen length methods. The data are represented in trapezoidal fuzzy numbers and the accuracy of the forecasting model is calculated using the distance, area, height and perimeter ratio similarity measure. The model is applied in a numerical example of Malaysian unemployment rate. The findings show that the average based length outperforms the other two types of interval length.</description><subject>Forecasting</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Similarity</subject><subject>Similarity measures</subject><subject>Time series</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLw0AUhQdRsFYX_oMBd0LqPPNYSvEFBTcK7sJkcqedkmTizKSSgv_dSAvuXJ3F_e534CB0TcmCkpTfyQUhNCcFPUEzKiVNspSmp2hGSCESJvjHOboIYUsIK7Isn6HvpWt75W1wHXYGm2G_H3G0LeAA3kLAxnnQKkTbrXHramhwpQLUeOKDbW0z_cYRt6DC4AFr12noI_6ycYNrawx46CKOYz-pJr_tIvidanAD3TpuLtGZUU2Aq2PO0fvjw9vyOVm9Pr0s71eJ5iyPCWM6k0VmoKi0IEKTWtaiEEpVWulUqULmWa2I4DlU07VgVV5Lygw1THNuKJ-jm4O39-5zgBDLrRt8N1WWTIg8o5ILPlG3BypoG1W0rit7b1vlx5KS8nfeUpbHef-Dd87_gWVfG_4DZi1-TQ</recordid><startdate>20201006</startdate><enddate>20201006</enddate><creator>Ramli, Nazirah</creator><creator>Alam, Nik Muhammad Farhan Hakim Nik Badrul</creator><creator>Mutalib, Siti Musleha Ab</creator><creator>Mohamad, Daud</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20201006</creationdate><title>Comparison of fuzzy time series forecasting model based on similarity measure concept with different types of interval length</title><author>Ramli, Nazirah ; Alam, Nik Muhammad Farhan Hakim Nik Badrul ; Mutalib, Siti Musleha Ab ; Mohamad, Daud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-22c7597fe9bc404c0d5d494aabcac6aa9587da0438eb4c092b8d512f1f2c33f13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Forecasting</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Similarity</topic><topic>Similarity measures</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramli, Nazirah</creatorcontrib><creatorcontrib>Alam, Nik Muhammad Farhan Hakim Nik Badrul</creatorcontrib><creatorcontrib>Mutalib, Siti Musleha Ab</creatorcontrib><creatorcontrib>Mohamad, Daud</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramli, Nazirah</au><au>Alam, Nik Muhammad Farhan Hakim Nik Badrul</au><au>Mutalib, Siti Musleha Ab</au><au>Mohamad, Daud</au><au>Ibrahim, Siti Nur Iqmal</au><au>Lee, Lai Soon</au><au>Ibrahim, Noor Akma</au><au>Midi, Habshah</au><au>Ismail, Fudziah</au><au>Wahi, Nadihah</au><au>Leong, Wah June</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comparison of fuzzy time series forecasting model based on similarity measure concept with different types of interval length</atitle><btitle>AIP conference proceedings</btitle><date>2020-10-06</date><risdate>2020</risdate><volume>2266</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Fuzzy time series forecasting model has been proposed to cater for data in linguistic values. One of the crucial factors that influence the performance of fuzzy time series is the partition of interval length. This paper compares the effect of several interval lengths to the performance of fuzzy time series forecasting model. The interval length considered are the average based, frequency density based and randomly chosen length methods. The data are represented in trapezoidal fuzzy numbers and the accuracy of the forecasting model is calculated using the distance, area, height and perimeter ratio similarity measure. The model is applied in a numerical example of Malaysian unemployment rate. The findings show that the average based length outperforms the other two types of interval length.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0018091</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2020, Vol.2266 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0018091 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Forecasting Mathematical models Model accuracy Similarity Similarity measures Time series |
title | Comparison of fuzzy time series forecasting model based on similarity measure concept with different types of interval length |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A41%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comparison%20of%20fuzzy%20time%20series%20forecasting%20model%20based%20on%20similarity%20measure%20concept%20with%20different%20types%20of%20interval%20length&rft.btitle=AIP%20conference%20proceedings&rft.au=Ramli,%20Nazirah&rft.date=2020-10-06&rft.volume=2266&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0018091&rft_dat=%3Cproquest_scita%3E2448715343%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-22c7597fe9bc404c0d5d494aabcac6aa9587da0438eb4c092b8d512f1f2c33f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2448715343&rft_id=info:pmid/&rfr_iscdi=true |