Loading…

Comparison of fuzzy time series forecasting model based on similarity measure concept with different types of interval length

Fuzzy time series forecasting model has been proposed to cater for data in linguistic values. One of the crucial factors that influence the performance of fuzzy time series is the partition of interval length. This paper compares the effect of several interval lengths to the performance of fuzzy tim...

Full description

Saved in:
Bibliographic Details
Main Authors: Ramli, Nazirah, Alam, Nik Muhammad Farhan Hakim Nik Badrul, Mutalib, Siti Musleha Ab, Mohamad, Daud
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c328t-22c7597fe9bc404c0d5d494aabcac6aa9587da0438eb4c092b8d512f1f2c33f13
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2266
creator Ramli, Nazirah
Alam, Nik Muhammad Farhan Hakim Nik Badrul
Mutalib, Siti Musleha Ab
Mohamad, Daud
description Fuzzy time series forecasting model has been proposed to cater for data in linguistic values. One of the crucial factors that influence the performance of fuzzy time series is the partition of interval length. This paper compares the effect of several interval lengths to the performance of fuzzy time series forecasting model. The interval length considered are the average based, frequency density based and randomly chosen length methods. The data are represented in trapezoidal fuzzy numbers and the accuracy of the forecasting model is calculated using the distance, area, height and perimeter ratio similarity measure. The model is applied in a numerical example of Malaysian unemployment rate. The findings show that the average based length outperforms the other two types of interval length.
doi_str_mv 10.1063/5.0018091
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0018091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448715343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-22c7597fe9bc404c0d5d494aabcac6aa9587da0438eb4c092b8d512f1f2c33f13</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFYX_oMBd0LqPPNYSvEFBTcK7sJkcqedkmTizKSSgv_dSAvuXJ3F_e534CB0TcmCkpTfyQUhNCcFPUEzKiVNspSmp2hGSCESJvjHOboIYUsIK7Isn6HvpWt75W1wHXYGm2G_H3G0LeAA3kLAxnnQKkTbrXHramhwpQLUeOKDbW0z_cYRt6DC4AFr12noI_6ycYNrawx46CKOYz-pJr_tIvidanAD3TpuLtGZUU2Aq2PO0fvjw9vyOVm9Pr0s71eJ5iyPCWM6k0VmoKi0IEKTWtaiEEpVWulUqULmWa2I4DlU07VgVV5Lygw1THNuKJ-jm4O39-5zgBDLrRt8N1WWTIg8o5ILPlG3BypoG1W0rit7b1vlx5KS8nfeUpbHef-Dd87_gWVfG_4DZi1-TQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2448715343</pqid></control><display><type>conference_proceeding</type><title>Comparison of fuzzy time series forecasting model based on similarity measure concept with different types of interval length</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Ramli, Nazirah ; Alam, Nik Muhammad Farhan Hakim Nik Badrul ; Mutalib, Siti Musleha Ab ; Mohamad, Daud</creator><contributor>Ibrahim, Siti Nur Iqmal ; Lee, Lai Soon ; Ibrahim, Noor Akma ; Midi, Habshah ; Ismail, Fudziah ; Wahi, Nadihah ; Leong, Wah June</contributor><creatorcontrib>Ramli, Nazirah ; Alam, Nik Muhammad Farhan Hakim Nik Badrul ; Mutalib, Siti Musleha Ab ; Mohamad, Daud ; Ibrahim, Siti Nur Iqmal ; Lee, Lai Soon ; Ibrahim, Noor Akma ; Midi, Habshah ; Ismail, Fudziah ; Wahi, Nadihah ; Leong, Wah June</creatorcontrib><description>Fuzzy time series forecasting model has been proposed to cater for data in linguistic values. One of the crucial factors that influence the performance of fuzzy time series is the partition of interval length. This paper compares the effect of several interval lengths to the performance of fuzzy time series forecasting model. The interval length considered are the average based, frequency density based and randomly chosen length methods. The data are represented in trapezoidal fuzzy numbers and the accuracy of the forecasting model is calculated using the distance, area, height and perimeter ratio similarity measure. The model is applied in a numerical example of Malaysian unemployment rate. The findings show that the average based length outperforms the other two types of interval length.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0018091</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Forecasting ; Mathematical models ; Model accuracy ; Similarity ; Similarity measures ; Time series</subject><ispartof>AIP conference proceedings, 2020, Vol.2266 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-22c7597fe9bc404c0d5d494aabcac6aa9587da0438eb4c092b8d512f1f2c33f13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23921,23922,25131,27915,27916</link.rule.ids></links><search><contributor>Ibrahim, Siti Nur Iqmal</contributor><contributor>Lee, Lai Soon</contributor><contributor>Ibrahim, Noor Akma</contributor><contributor>Midi, Habshah</contributor><contributor>Ismail, Fudziah</contributor><contributor>Wahi, Nadihah</contributor><contributor>Leong, Wah June</contributor><creatorcontrib>Ramli, Nazirah</creatorcontrib><creatorcontrib>Alam, Nik Muhammad Farhan Hakim Nik Badrul</creatorcontrib><creatorcontrib>Mutalib, Siti Musleha Ab</creatorcontrib><creatorcontrib>Mohamad, Daud</creatorcontrib><title>Comparison of fuzzy time series forecasting model based on similarity measure concept with different types of interval length</title><title>AIP conference proceedings</title><description>Fuzzy time series forecasting model has been proposed to cater for data in linguistic values. One of the crucial factors that influence the performance of fuzzy time series is the partition of interval length. This paper compares the effect of several interval lengths to the performance of fuzzy time series forecasting model. The interval length considered are the average based, frequency density based and randomly chosen length methods. The data are represented in trapezoidal fuzzy numbers and the accuracy of the forecasting model is calculated using the distance, area, height and perimeter ratio similarity measure. The model is applied in a numerical example of Malaysian unemployment rate. The findings show that the average based length outperforms the other two types of interval length.</description><subject>Forecasting</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Similarity</subject><subject>Similarity measures</subject><subject>Time series</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLw0AUhQdRsFYX_oMBd0LqPPNYSvEFBTcK7sJkcqedkmTizKSSgv_dSAvuXJ3F_e534CB0TcmCkpTfyQUhNCcFPUEzKiVNspSmp2hGSCESJvjHOboIYUsIK7Isn6HvpWt75W1wHXYGm2G_H3G0LeAA3kLAxnnQKkTbrXHramhwpQLUeOKDbW0z_cYRt6DC4AFr12noI_6ycYNrawx46CKOYz-pJr_tIvidanAD3TpuLtGZUU2Aq2PO0fvjw9vyOVm9Pr0s71eJ5iyPCWM6k0VmoKi0IEKTWtaiEEpVWulUqULmWa2I4DlU07VgVV5Lygw1THNuKJ-jm4O39-5zgBDLrRt8N1WWTIg8o5ILPlG3BypoG1W0rit7b1vlx5KS8nfeUpbHef-Dd87_gWVfG_4DZi1-TQ</recordid><startdate>20201006</startdate><enddate>20201006</enddate><creator>Ramli, Nazirah</creator><creator>Alam, Nik Muhammad Farhan Hakim Nik Badrul</creator><creator>Mutalib, Siti Musleha Ab</creator><creator>Mohamad, Daud</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20201006</creationdate><title>Comparison of fuzzy time series forecasting model based on similarity measure concept with different types of interval length</title><author>Ramli, Nazirah ; Alam, Nik Muhammad Farhan Hakim Nik Badrul ; Mutalib, Siti Musleha Ab ; Mohamad, Daud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-22c7597fe9bc404c0d5d494aabcac6aa9587da0438eb4c092b8d512f1f2c33f13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Forecasting</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Similarity</topic><topic>Similarity measures</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramli, Nazirah</creatorcontrib><creatorcontrib>Alam, Nik Muhammad Farhan Hakim Nik Badrul</creatorcontrib><creatorcontrib>Mutalib, Siti Musleha Ab</creatorcontrib><creatorcontrib>Mohamad, Daud</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramli, Nazirah</au><au>Alam, Nik Muhammad Farhan Hakim Nik Badrul</au><au>Mutalib, Siti Musleha Ab</au><au>Mohamad, Daud</au><au>Ibrahim, Siti Nur Iqmal</au><au>Lee, Lai Soon</au><au>Ibrahim, Noor Akma</au><au>Midi, Habshah</au><au>Ismail, Fudziah</au><au>Wahi, Nadihah</au><au>Leong, Wah June</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comparison of fuzzy time series forecasting model based on similarity measure concept with different types of interval length</atitle><btitle>AIP conference proceedings</btitle><date>2020-10-06</date><risdate>2020</risdate><volume>2266</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Fuzzy time series forecasting model has been proposed to cater for data in linguistic values. One of the crucial factors that influence the performance of fuzzy time series is the partition of interval length. This paper compares the effect of several interval lengths to the performance of fuzzy time series forecasting model. The interval length considered are the average based, frequency density based and randomly chosen length methods. The data are represented in trapezoidal fuzzy numbers and the accuracy of the forecasting model is calculated using the distance, area, height and perimeter ratio similarity measure. The model is applied in a numerical example of Malaysian unemployment rate. The findings show that the average based length outperforms the other two types of interval length.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0018091</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2020, Vol.2266 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0018091
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Forecasting
Mathematical models
Model accuracy
Similarity
Similarity measures
Time series
title Comparison of fuzzy time series forecasting model based on similarity measure concept with different types of interval length
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A41%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comparison%20of%20fuzzy%20time%20series%20forecasting%20model%20based%20on%20similarity%20measure%20concept%20with%20different%20types%20of%20interval%20length&rft.btitle=AIP%20conference%20proceedings&rft.au=Ramli,%20Nazirah&rft.date=2020-10-06&rft.volume=2266&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0018091&rft_dat=%3Cproquest_scita%3E2448715343%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-22c7597fe9bc404c0d5d494aabcac6aa9587da0438eb4c092b8d512f1f2c33f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2448715343&rft_id=info:pmid/&rfr_iscdi=true