Loading…

Cathodoluminescence and x-ray photoelectron spectroscopy of ScN: Dopant, defects, and band structure

We have studied the optical band and defect transitions of ScN, a group IIIB transition metal nitride semiconductor with electronic and optoelectronic applications. Recent works have focused on the degenerate nature of ScN by substitutional impurities ON and FN, which shift the direct (X–X) gap tran...

Full description

Saved in:
Bibliographic Details
Published in:APL materials 2020-08, Vol.8 (8), p.81103-081103-7
Main Authors: Haseman, Micah S., Noesges, Brenton A., Shields, Seth, Cetnar, John S., Reed, Amber N., Al-Atabi, Hayder A., Edgar, James H., Brillson, Leonard J.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-621fc117947fc7fc330d0b9501f8b04f52d5dfb325072142b6953e6d2fa7d4f33
cites cdi_FETCH-LOGICAL-c400t-621fc117947fc7fc330d0b9501f8b04f52d5dfb325072142b6953e6d2fa7d4f33
container_end_page 081103-7
container_issue 8
container_start_page 81103
container_title APL materials
container_volume 8
creator Haseman, Micah S.
Noesges, Brenton A.
Shields, Seth
Cetnar, John S.
Reed, Amber N.
Al-Atabi, Hayder A.
Edgar, James H.
Brillson, Leonard J.
description We have studied the optical band and defect transitions of ScN, a group IIIB transition metal nitride semiconductor with electronic and optoelectronic applications. Recent works have focused on the degenerate nature of ScN by substitutional impurities ON and FN, which shift the direct (X–X) gap transition to higher energies via the Burstein–Moss effect. We used cathodoluminescence spectroscopy (CLS) to observe optical signatures of both the midgap VN precursor to ON doping as well as above the direct (X–X) bandgap corresponding to band-to-band transitions from four separate conduction bands near the Γ point with the valence band minimum, in agreement with the calculated band structure diagrams. Thin film ScN grown by reactive magnetron sputtering displays mild degenerate doping by substitutional oxygen as indicated by elevated (X–X) transition energies and the presence of Sc–O bonding determined via x-ray photoelectron spectroscopy (XPS), while ScN grown by physical vapor transport exhibited the intrinsic, non-degenerate (X–X) bandgap predicted by theory. CLS reveals a sharp, sub-bandgap emission at 1.26 eV for sputter grown ScN on GaN, which we attribute to nitrogen vacancies (VN) based on surface sensitive CLS and XPS chemical trends. This finding is in strong agreement with theoretical calculations for VN predicting the formation of a defect energy level within the gap.
doi_str_mv 10.1063/5.0019533
format article
fullrecord <record><control><sourceid>scitation_doaj_</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0019533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8daa355054074a39bddb5e3e30035d4e</doaj_id><sourcerecordid>apm</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-621fc117947fc7fc330d0b9501f8b04f52d5dfb325072142b6953e6d2fa7d4f33</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgBdRsNQe_Ae5Kt06ee12vUl9FYoeVPAWsnnYLdvNkqRi_73bB1UQhGFmyHz5YCZJzjGMMGT0io8AcMEpPUp6BGdZyil5P_7VnyaDEBbQUUDpuMh6iZ7IOHfa1atl1ZigTKMMko1GX6mXa9TOXXSmNip616DQbpugXLtGzqIX9XSNbl0rmzhE2thuGobb3-UmhehXKq68OUtOrKyDGexrP3m7v3udPKaz54fp5GaWKgYQ04xgqzDOC5Zb1QWloKEsOGA7LoFZTjTXtqSEQ04wI2XW7WoyTazMNbOU9pPpzqudXIjWV0vp18LJSmwfnP8Q0sdK1UaMtZSUc-AMciZpUWpdckMNBaBcM9O5LnYu1S0cvLEHHwaxubbgYn_tjr3csUFVUcbKNQf40_kfULTa_gf_NX8DOEGNwg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cathodoluminescence and x-ray photoelectron spectroscopy of ScN: Dopant, defects, and band structure</title><source>AIP Open Access Journals</source><creator>Haseman, Micah S. ; Noesges, Brenton A. ; Shields, Seth ; Cetnar, John S. ; Reed, Amber N. ; Al-Atabi, Hayder A. ; Edgar, James H. ; Brillson, Leonard J.</creator><creatorcontrib>Haseman, Micah S. ; Noesges, Brenton A. ; Shields, Seth ; Cetnar, John S. ; Reed, Amber N. ; Al-Atabi, Hayder A. ; Edgar, James H. ; Brillson, Leonard J.</creatorcontrib><description>We have studied the optical band and defect transitions of ScN, a group IIIB transition metal nitride semiconductor with electronic and optoelectronic applications. Recent works have focused on the degenerate nature of ScN by substitutional impurities ON and FN, which shift the direct (X–X) gap transition to higher energies via the Burstein–Moss effect. We used cathodoluminescence spectroscopy (CLS) to observe optical signatures of both the midgap VN precursor to ON doping as well as above the direct (X–X) bandgap corresponding to band-to-band transitions from four separate conduction bands near the Γ point with the valence band minimum, in agreement with the calculated band structure diagrams. Thin film ScN grown by reactive magnetron sputtering displays mild degenerate doping by substitutional oxygen as indicated by elevated (X–X) transition energies and the presence of Sc–O bonding determined via x-ray photoelectron spectroscopy (XPS), while ScN grown by physical vapor transport exhibited the intrinsic, non-degenerate (X–X) bandgap predicted by theory. CLS reveals a sharp, sub-bandgap emission at 1.26 eV for sputter grown ScN on GaN, which we attribute to nitrogen vacancies (VN) based on surface sensitive CLS and XPS chemical trends. This finding is in strong agreement with theoretical calculations for VN predicting the formation of a defect energy level within the gap.</description><identifier>ISSN: 2166-532X</identifier><identifier>EISSN: 2166-532X</identifier><identifier>DOI: 10.1063/5.0019533</identifier><identifier>CODEN: AMPADS</identifier><language>eng</language><publisher>AIP Publishing LLC</publisher><ispartof>APL materials, 2020-08, Vol.8 (8), p.81103-081103-7</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-621fc117947fc7fc330d0b9501f8b04f52d5dfb325072142b6953e6d2fa7d4f33</citedby><cites>FETCH-LOGICAL-c400t-621fc117947fc7fc330d0b9501f8b04f52d5dfb325072142b6953e6d2fa7d4f33</cites><orcidid>0000-0003-3528-2696 ; 0000-0003-3008-5036 ; 0000-0002-7480-1180 ; 0000-0003-0918-5964 ; 0000-0003-3527-9761 ; 0000-0002-9257-2860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apm/article-lookup/doi/10.1063/5.0019533$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27889,27923,27924,76179</link.rule.ids></links><search><creatorcontrib>Haseman, Micah S.</creatorcontrib><creatorcontrib>Noesges, Brenton A.</creatorcontrib><creatorcontrib>Shields, Seth</creatorcontrib><creatorcontrib>Cetnar, John S.</creatorcontrib><creatorcontrib>Reed, Amber N.</creatorcontrib><creatorcontrib>Al-Atabi, Hayder A.</creatorcontrib><creatorcontrib>Edgar, James H.</creatorcontrib><creatorcontrib>Brillson, Leonard J.</creatorcontrib><title>Cathodoluminescence and x-ray photoelectron spectroscopy of ScN: Dopant, defects, and band structure</title><title>APL materials</title><description>We have studied the optical band and defect transitions of ScN, a group IIIB transition metal nitride semiconductor with electronic and optoelectronic applications. Recent works have focused on the degenerate nature of ScN by substitutional impurities ON and FN, which shift the direct (X–X) gap transition to higher energies via the Burstein–Moss effect. We used cathodoluminescence spectroscopy (CLS) to observe optical signatures of both the midgap VN precursor to ON doping as well as above the direct (X–X) bandgap corresponding to band-to-band transitions from four separate conduction bands near the Γ point with the valence band minimum, in agreement with the calculated band structure diagrams. Thin film ScN grown by reactive magnetron sputtering displays mild degenerate doping by substitutional oxygen as indicated by elevated (X–X) transition energies and the presence of Sc–O bonding determined via x-ray photoelectron spectroscopy (XPS), while ScN grown by physical vapor transport exhibited the intrinsic, non-degenerate (X–X) bandgap predicted by theory. CLS reveals a sharp, sub-bandgap emission at 1.26 eV for sputter grown ScN on GaN, which we attribute to nitrogen vacancies (VN) based on surface sensitive CLS and XPS chemical trends. This finding is in strong agreement with theoretical calculations for VN predicting the formation of a defect energy level within the gap.</description><issn>2166-532X</issn><issn>2166-532X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>DOA</sourceid><recordid>eNp9kEtLAzEQgBdRsNQe_Ae5Kt06ee12vUl9FYoeVPAWsnnYLdvNkqRi_73bB1UQhGFmyHz5YCZJzjGMMGT0io8AcMEpPUp6BGdZyil5P_7VnyaDEBbQUUDpuMh6iZ7IOHfa1atl1ZigTKMMko1GX6mXa9TOXXSmNip616DQbpugXLtGzqIX9XSNbl0rmzhE2thuGobb3-UmhehXKq68OUtOrKyDGexrP3m7v3udPKaz54fp5GaWKgYQ04xgqzDOC5Zb1QWloKEsOGA7LoFZTjTXtqSEQ04wI2XW7WoyTazMNbOU9pPpzqudXIjWV0vp18LJSmwfnP8Q0sdK1UaMtZSUc-AMciZpUWpdckMNBaBcM9O5LnYu1S0cvLEHHwaxubbgYn_tjr3csUFVUcbKNQf40_kfULTa_gf_NX8DOEGNwg</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Haseman, Micah S.</creator><creator>Noesges, Brenton A.</creator><creator>Shields, Seth</creator><creator>Cetnar, John S.</creator><creator>Reed, Amber N.</creator><creator>Al-Atabi, Hayder A.</creator><creator>Edgar, James H.</creator><creator>Brillson, Leonard J.</creator><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3528-2696</orcidid><orcidid>https://orcid.org/0000-0003-3008-5036</orcidid><orcidid>https://orcid.org/0000-0002-7480-1180</orcidid><orcidid>https://orcid.org/0000-0003-0918-5964</orcidid><orcidid>https://orcid.org/0000-0003-3527-9761</orcidid><orcidid>https://orcid.org/0000-0002-9257-2860</orcidid></search><sort><creationdate>20200801</creationdate><title>Cathodoluminescence and x-ray photoelectron spectroscopy of ScN: Dopant, defects, and band structure</title><author>Haseman, Micah S. ; Noesges, Brenton A. ; Shields, Seth ; Cetnar, John S. ; Reed, Amber N. ; Al-Atabi, Hayder A. ; Edgar, James H. ; Brillson, Leonard J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-621fc117947fc7fc330d0b9501f8b04f52d5dfb325072142b6953e6d2fa7d4f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haseman, Micah S.</creatorcontrib><creatorcontrib>Noesges, Brenton A.</creatorcontrib><creatorcontrib>Shields, Seth</creatorcontrib><creatorcontrib>Cetnar, John S.</creatorcontrib><creatorcontrib>Reed, Amber N.</creatorcontrib><creatorcontrib>Al-Atabi, Hayder A.</creatorcontrib><creatorcontrib>Edgar, James H.</creatorcontrib><creatorcontrib>Brillson, Leonard J.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>APL materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haseman, Micah S.</au><au>Noesges, Brenton A.</au><au>Shields, Seth</au><au>Cetnar, John S.</au><au>Reed, Amber N.</au><au>Al-Atabi, Hayder A.</au><au>Edgar, James H.</au><au>Brillson, Leonard J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cathodoluminescence and x-ray photoelectron spectroscopy of ScN: Dopant, defects, and band structure</atitle><jtitle>APL materials</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>8</volume><issue>8</issue><spage>81103</spage><epage>081103-7</epage><pages>81103-081103-7</pages><issn>2166-532X</issn><eissn>2166-532X</eissn><coden>AMPADS</coden><abstract>We have studied the optical band and defect transitions of ScN, a group IIIB transition metal nitride semiconductor with electronic and optoelectronic applications. Recent works have focused on the degenerate nature of ScN by substitutional impurities ON and FN, which shift the direct (X–X) gap transition to higher energies via the Burstein–Moss effect. We used cathodoluminescence spectroscopy (CLS) to observe optical signatures of both the midgap VN precursor to ON doping as well as above the direct (X–X) bandgap corresponding to band-to-band transitions from four separate conduction bands near the Γ point with the valence band minimum, in agreement with the calculated band structure diagrams. Thin film ScN grown by reactive magnetron sputtering displays mild degenerate doping by substitutional oxygen as indicated by elevated (X–X) transition energies and the presence of Sc–O bonding determined via x-ray photoelectron spectroscopy (XPS), while ScN grown by physical vapor transport exhibited the intrinsic, non-degenerate (X–X) bandgap predicted by theory. CLS reveals a sharp, sub-bandgap emission at 1.26 eV for sputter grown ScN on GaN, which we attribute to nitrogen vacancies (VN) based on surface sensitive CLS and XPS chemical trends. This finding is in strong agreement with theoretical calculations for VN predicting the formation of a defect energy level within the gap.</abstract><pub>AIP Publishing LLC</pub><doi>10.1063/5.0019533</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3528-2696</orcidid><orcidid>https://orcid.org/0000-0003-3008-5036</orcidid><orcidid>https://orcid.org/0000-0002-7480-1180</orcidid><orcidid>https://orcid.org/0000-0003-0918-5964</orcidid><orcidid>https://orcid.org/0000-0003-3527-9761</orcidid><orcidid>https://orcid.org/0000-0002-9257-2860</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2166-532X
ispartof APL materials, 2020-08, Vol.8 (8), p.81103-081103-7
issn 2166-532X
2166-532X
language eng
recordid cdi_scitation_primary_10_1063_5_0019533
source AIP Open Access Journals
title Cathodoluminescence and x-ray photoelectron spectroscopy of ScN: Dopant, defects, and band structure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A38%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cathodoluminescence%20and%20x-ray%20photoelectron%20spectroscopy%20of%20ScN:%20Dopant,%20defects,%20and%20band%20structure&rft.jtitle=APL%20materials&rft.au=Haseman,%20Micah%20S.&rft.date=2020-08-01&rft.volume=8&rft.issue=8&rft.spage=81103&rft.epage=081103-7&rft.pages=81103-081103-7&rft.issn=2166-532X&rft.eissn=2166-532X&rft.coden=AMPADS&rft_id=info:doi/10.1063/5.0019533&rft_dat=%3Cscitation_doaj_%3Eapm%3C/scitation_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-621fc117947fc7fc330d0b9501f8b04f52d5dfb325072142b6953e6d2fa7d4f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true