Loading…
Effect of radiation on thermosolutal Marangoni convection in a porous medium with chemical reaction and heat source/sink
Thermosolutal Marangoni boundary layer flows are of great interest due to their applications in industrial applications such as drying of silicon wafers, thin layers of paint, glues, in heat exchangers, and crystal growth in space. The present analysis deals with the effect of chemical radiation and...
Saved in:
Published in: | Physics of fluids (1994) 2020-11, Vol.32 (11) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-932e857bed757cb10f2e6de29746ddf988086ddaa798f7d5c7f852716040b2c23 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-932e857bed757cb10f2e6de29746ddf988086ddaa798f7d5c7f852716040b2c23 |
container_end_page | |
container_issue | 11 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 32 |
creator | Mahabaleshwar, U. S. Nagaraju, K. R. Vinay Kumar, P. N. Azese, Martin Ndi |
description | Thermosolutal Marangoni boundary layer flows are of great interest due to their applications in industrial applications such as drying of silicon wafers, thin layers of paint, glues, in heat exchangers, and crystal growth in space. The present analysis deals with the effect of chemical radiation and heat absorption/generation of the viscous fluid flow on a thermosolutal Marangoni porous boundary with mass transpiration and heat source/sink. The physical flow problem is mathematically modeled into Navier–Stokes equations. These nonlinear partial differential equations are then mapped into a set of nonlinear ordinary differential equations using similarity transformation. The analytical solutions for velocity, temperature, and concentration profiles are rigorously derived. The solutions so obtained are analyzed through various plots to demonstrate the effect of various physical parameters such as mass transpiration parameter Vc, inverse Darcy number Da−1, Marangoni number Ma, Schmidt number Sc, chemical reaction coefficient (K), Prandtl number (Pr), thermal radiation parameter (NR), and the heat source/sink parameter (I) on the momentum/thermal boundary, and their physical insights are also reported. |
doi_str_mv | 10.1063/5.0023084 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0023084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457128235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-932e857bed757cb10f2e6de29746ddf988086ddaa798f7d5c7f852716040b2c23</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwbTbZTbJHKfUDKl70HNJ8uKndTU2yVf-9W7foQRAGMocnM8MLwHmOJjmiZFpOEMIE8eIAjHLEq4xRSg93PUMZpSQ_BicxrhBCpMJ0BD7m1hqVoLcwSO1kcr6FfaXahMZHv-6SXMMHGWT74lsHlW-3vd8p10IJNz74LsLGaNc18N2lGqraNE71v4KRg5SthrWRCUbfBWWm0bWvp-DIynU0Z_t3DJ5v5k-zu2zxeHs_u15kimCWsopgw0u2NJqVTC1zZLGh2uCKFVRrW3GOeN9IySpumS4Vs7zELKeoQEusMBmDi2HuJvi3zsQkVv0Rbb9S4KJkOeaYlL26HJQKPsZgrNgE18jwKXIkdsGKUuyD7e3VYKNy6TuwH7z14ReKjbb_4b-TvwCLkYgF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457128235</pqid></control><display><type>article</type><title>Effect of radiation on thermosolutal Marangoni convection in a porous medium with chemical reaction and heat source/sink</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Mahabaleshwar, U. S. ; Nagaraju, K. R. ; Vinay Kumar, P. N. ; Azese, Martin Ndi</creator><creatorcontrib>Mahabaleshwar, U. S. ; Nagaraju, K. R. ; Vinay Kumar, P. N. ; Azese, Martin Ndi</creatorcontrib><description>Thermosolutal Marangoni boundary layer flows are of great interest due to their applications in industrial applications such as drying of silicon wafers, thin layers of paint, glues, in heat exchangers, and crystal growth in space. The present analysis deals with the effect of chemical radiation and heat absorption/generation of the viscous fluid flow on a thermosolutal Marangoni porous boundary with mass transpiration and heat source/sink. The physical flow problem is mathematically modeled into Navier–Stokes equations. These nonlinear partial differential equations are then mapped into a set of nonlinear ordinary differential equations using similarity transformation. The analytical solutions for velocity, temperature, and concentration profiles are rigorously derived. The solutions so obtained are analyzed through various plots to demonstrate the effect of various physical parameters such as mass transpiration parameter Vc, inverse Darcy number Da−1, Marangoni number Ma, Schmidt number Sc, chemical reaction coefficient (K), Prandtl number (Pr), thermal radiation parameter (NR), and the heat source/sink parameter (I) on the momentum/thermal boundary, and their physical insights are also reported.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0023084</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boundary layer flow ; Chemical reactions ; Computational fluid dynamics ; Crystal growth ; Darcy number ; Differential thermal analysis ; Exact solutions ; Fluid dynamics ; Fluid flow ; Glues ; Heat exchangers ; Industrial applications ; Marangoni convection ; Nonlinear differential equations ; Nonlinear equations ; Ordinary differential equations ; Parameters ; Partial differential equations ; Physical properties ; Physics ; Porous media ; Prandtl number ; Radiation effects ; Schmidt number ; Silicon wafers ; Thermal radiation ; Thin films ; Transpiration ; Viscous fluids</subject><ispartof>Physics of fluids (1994), 2020-11, Vol.32 (11)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-932e857bed757cb10f2e6de29746ddf988086ddaa798f7d5c7f852716040b2c23</citedby><cites>FETCH-LOGICAL-c327t-932e857bed757cb10f2e6de29746ddf988086ddaa798f7d5c7f852716040b2c23</cites><orcidid>0000-0001-7225-7217 ; 0000-0003-1380-6057 ; 0000-0002-8508-2898</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,1555,27906,27907</link.rule.ids></links><search><creatorcontrib>Mahabaleshwar, U. S.</creatorcontrib><creatorcontrib>Nagaraju, K. R.</creatorcontrib><creatorcontrib>Vinay Kumar, P. N.</creatorcontrib><creatorcontrib>Azese, Martin Ndi</creatorcontrib><title>Effect of radiation on thermosolutal Marangoni convection in a porous medium with chemical reaction and heat source/sink</title><title>Physics of fluids (1994)</title><description>Thermosolutal Marangoni boundary layer flows are of great interest due to their applications in industrial applications such as drying of silicon wafers, thin layers of paint, glues, in heat exchangers, and crystal growth in space. The present analysis deals with the effect of chemical radiation and heat absorption/generation of the viscous fluid flow on a thermosolutal Marangoni porous boundary with mass transpiration and heat source/sink. The physical flow problem is mathematically modeled into Navier–Stokes equations. These nonlinear partial differential equations are then mapped into a set of nonlinear ordinary differential equations using similarity transformation. The analytical solutions for velocity, temperature, and concentration profiles are rigorously derived. The solutions so obtained are analyzed through various plots to demonstrate the effect of various physical parameters such as mass transpiration parameter Vc, inverse Darcy number Da−1, Marangoni number Ma, Schmidt number Sc, chemical reaction coefficient (K), Prandtl number (Pr), thermal radiation parameter (NR), and the heat source/sink parameter (I) on the momentum/thermal boundary, and their physical insights are also reported.</description><subject>Boundary layer flow</subject><subject>Chemical reactions</subject><subject>Computational fluid dynamics</subject><subject>Crystal growth</subject><subject>Darcy number</subject><subject>Differential thermal analysis</subject><subject>Exact solutions</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Glues</subject><subject>Heat exchangers</subject><subject>Industrial applications</subject><subject>Marangoni convection</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>Ordinary differential equations</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Porous media</subject><subject>Prandtl number</subject><subject>Radiation effects</subject><subject>Schmidt number</subject><subject>Silicon wafers</subject><subject>Thermal radiation</subject><subject>Thin films</subject><subject>Transpiration</subject><subject>Viscous fluids</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwbTbZTbJHKfUDKl70HNJ8uKndTU2yVf-9W7foQRAGMocnM8MLwHmOJjmiZFpOEMIE8eIAjHLEq4xRSg93PUMZpSQ_BicxrhBCpMJ0BD7m1hqVoLcwSO1kcr6FfaXahMZHv-6SXMMHGWT74lsHlW-3vd8p10IJNz74LsLGaNc18N2lGqraNE71v4KRg5SthrWRCUbfBWWm0bWvp-DIynU0Z_t3DJ5v5k-zu2zxeHs_u15kimCWsopgw0u2NJqVTC1zZLGh2uCKFVRrW3GOeN9IySpumS4Vs7zELKeoQEusMBmDi2HuJvi3zsQkVv0Rbb9S4KJkOeaYlL26HJQKPsZgrNgE18jwKXIkdsGKUuyD7e3VYKNy6TuwH7z14ReKjbb_4b-TvwCLkYgF</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Mahabaleshwar, U. S.</creator><creator>Nagaraju, K. R.</creator><creator>Vinay Kumar, P. N.</creator><creator>Azese, Martin Ndi</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7225-7217</orcidid><orcidid>https://orcid.org/0000-0003-1380-6057</orcidid><orcidid>https://orcid.org/0000-0002-8508-2898</orcidid></search><sort><creationdate>20201101</creationdate><title>Effect of radiation on thermosolutal Marangoni convection in a porous medium with chemical reaction and heat source/sink</title><author>Mahabaleshwar, U. S. ; Nagaraju, K. R. ; Vinay Kumar, P. N. ; Azese, Martin Ndi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-932e857bed757cb10f2e6de29746ddf988086ddaa798f7d5c7f852716040b2c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boundary layer flow</topic><topic>Chemical reactions</topic><topic>Computational fluid dynamics</topic><topic>Crystal growth</topic><topic>Darcy number</topic><topic>Differential thermal analysis</topic><topic>Exact solutions</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Glues</topic><topic>Heat exchangers</topic><topic>Industrial applications</topic><topic>Marangoni convection</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>Ordinary differential equations</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Porous media</topic><topic>Prandtl number</topic><topic>Radiation effects</topic><topic>Schmidt number</topic><topic>Silicon wafers</topic><topic>Thermal radiation</topic><topic>Thin films</topic><topic>Transpiration</topic><topic>Viscous fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahabaleshwar, U. S.</creatorcontrib><creatorcontrib>Nagaraju, K. R.</creatorcontrib><creatorcontrib>Vinay Kumar, P. N.</creatorcontrib><creatorcontrib>Azese, Martin Ndi</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahabaleshwar, U. S.</au><au>Nagaraju, K. R.</au><au>Vinay Kumar, P. N.</au><au>Azese, Martin Ndi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of radiation on thermosolutal Marangoni convection in a porous medium with chemical reaction and heat source/sink</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>32</volume><issue>11</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Thermosolutal Marangoni boundary layer flows are of great interest due to their applications in industrial applications such as drying of silicon wafers, thin layers of paint, glues, in heat exchangers, and crystal growth in space. The present analysis deals with the effect of chemical radiation and heat absorption/generation of the viscous fluid flow on a thermosolutal Marangoni porous boundary with mass transpiration and heat source/sink. The physical flow problem is mathematically modeled into Navier–Stokes equations. These nonlinear partial differential equations are then mapped into a set of nonlinear ordinary differential equations using similarity transformation. The analytical solutions for velocity, temperature, and concentration profiles are rigorously derived. The solutions so obtained are analyzed through various plots to demonstrate the effect of various physical parameters such as mass transpiration parameter Vc, inverse Darcy number Da−1, Marangoni number Ma, Schmidt number Sc, chemical reaction coefficient (K), Prandtl number (Pr), thermal radiation parameter (NR), and the heat source/sink parameter (I) on the momentum/thermal boundary, and their physical insights are also reported.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0023084</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7225-7217</orcidid><orcidid>https://orcid.org/0000-0003-1380-6057</orcidid><orcidid>https://orcid.org/0000-0002-8508-2898</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2020-11, Vol.32 (11) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0023084 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive |
subjects | Boundary layer flow Chemical reactions Computational fluid dynamics Crystal growth Darcy number Differential thermal analysis Exact solutions Fluid dynamics Fluid flow Glues Heat exchangers Industrial applications Marangoni convection Nonlinear differential equations Nonlinear equations Ordinary differential equations Parameters Partial differential equations Physical properties Physics Porous media Prandtl number Radiation effects Schmidt number Silicon wafers Thermal radiation Thin films Transpiration Viscous fluids |
title | Effect of radiation on thermosolutal Marangoni convection in a porous medium with chemical reaction and heat source/sink |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A45%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20radiation%20on%20thermosolutal%20Marangoni%20convection%20in%20a%20porous%20medium%20with%20chemical%20reaction%20and%20heat%20source/sink&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Mahabaleshwar,%20U.%20S.&rft.date=2020-11-01&rft.volume=32&rft.issue=11&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0023084&rft_dat=%3Cproquest_scita%3E2457128235%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-932e857bed757cb10f2e6de29746ddf988086ddaa798f7d5c7f852716040b2c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2457128235&rft_id=info:pmid/&rfr_iscdi=true |