Loading…

Effect of radiation on thermosolutal Marangoni convection in a porous medium with chemical reaction and heat source/sink

Thermosolutal Marangoni boundary layer flows are of great interest due to their applications in industrial applications such as drying of silicon wafers, thin layers of paint, glues, in heat exchangers, and crystal growth in space. The present analysis deals with the effect of chemical radiation and...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2020-11, Vol.32 (11)
Main Authors: Mahabaleshwar, U. S., Nagaraju, K. R., Vinay Kumar, P. N., Azese, Martin Ndi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-932e857bed757cb10f2e6de29746ddf988086ddaa798f7d5c7f852716040b2c23
cites cdi_FETCH-LOGICAL-c327t-932e857bed757cb10f2e6de29746ddf988086ddaa798f7d5c7f852716040b2c23
container_end_page
container_issue 11
container_start_page
container_title Physics of fluids (1994)
container_volume 32
creator Mahabaleshwar, U. S.
Nagaraju, K. R.
Vinay Kumar, P. N.
Azese, Martin Ndi
description Thermosolutal Marangoni boundary layer flows are of great interest due to their applications in industrial applications such as drying of silicon wafers, thin layers of paint, glues, in heat exchangers, and crystal growth in space. The present analysis deals with the effect of chemical radiation and heat absorption/generation of the viscous fluid flow on a thermosolutal Marangoni porous boundary with mass transpiration and heat source/sink. The physical flow problem is mathematically modeled into Navier–Stokes equations. These nonlinear partial differential equations are then mapped into a set of nonlinear ordinary differential equations using similarity transformation. The analytical solutions for velocity, temperature, and concentration profiles are rigorously derived. The solutions so obtained are analyzed through various plots to demonstrate the effect of various physical parameters such as mass transpiration parameter Vc, inverse Darcy number Da−1, Marangoni number Ma, Schmidt number Sc, chemical reaction coefficient (K), Prandtl number (Pr), thermal radiation parameter (NR), and the heat source/sink parameter (I) on the momentum/thermal boundary, and their physical insights are also reported.
doi_str_mv 10.1063/5.0023084
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0023084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457128235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-932e857bed757cb10f2e6de29746ddf988086ddaa798f7d5c7f852716040b2c23</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwbTbZTbJHKfUDKl70HNJ8uKndTU2yVf-9W7foQRAGMocnM8MLwHmOJjmiZFpOEMIE8eIAjHLEq4xRSg93PUMZpSQ_BicxrhBCpMJ0BD7m1hqVoLcwSO1kcr6FfaXahMZHv-6SXMMHGWT74lsHlW-3vd8p10IJNz74LsLGaNc18N2lGqraNE71v4KRg5SthrWRCUbfBWWm0bWvp-DIynU0Z_t3DJ5v5k-zu2zxeHs_u15kimCWsopgw0u2NJqVTC1zZLGh2uCKFVRrW3GOeN9IySpumS4Vs7zELKeoQEusMBmDi2HuJvi3zsQkVv0Rbb9S4KJkOeaYlL26HJQKPsZgrNgE18jwKXIkdsGKUuyD7e3VYKNy6TuwH7z14ReKjbb_4b-TvwCLkYgF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457128235</pqid></control><display><type>article</type><title>Effect of radiation on thermosolutal Marangoni convection in a porous medium with chemical reaction and heat source/sink</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Mahabaleshwar, U. S. ; Nagaraju, K. R. ; Vinay Kumar, P. N. ; Azese, Martin Ndi</creator><creatorcontrib>Mahabaleshwar, U. S. ; Nagaraju, K. R. ; Vinay Kumar, P. N. ; Azese, Martin Ndi</creatorcontrib><description>Thermosolutal Marangoni boundary layer flows are of great interest due to their applications in industrial applications such as drying of silicon wafers, thin layers of paint, glues, in heat exchangers, and crystal growth in space. The present analysis deals with the effect of chemical radiation and heat absorption/generation of the viscous fluid flow on a thermosolutal Marangoni porous boundary with mass transpiration and heat source/sink. The physical flow problem is mathematically modeled into Navier–Stokes equations. These nonlinear partial differential equations are then mapped into a set of nonlinear ordinary differential equations using similarity transformation. The analytical solutions for velocity, temperature, and concentration profiles are rigorously derived. The solutions so obtained are analyzed through various plots to demonstrate the effect of various physical parameters such as mass transpiration parameter Vc, inverse Darcy number Da−1, Marangoni number Ma, Schmidt number Sc, chemical reaction coefficient (K), Prandtl number (Pr), thermal radiation parameter (NR), and the heat source/sink parameter (I) on the momentum/thermal boundary, and their physical insights are also reported.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0023084</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boundary layer flow ; Chemical reactions ; Computational fluid dynamics ; Crystal growth ; Darcy number ; Differential thermal analysis ; Exact solutions ; Fluid dynamics ; Fluid flow ; Glues ; Heat exchangers ; Industrial applications ; Marangoni convection ; Nonlinear differential equations ; Nonlinear equations ; Ordinary differential equations ; Parameters ; Partial differential equations ; Physical properties ; Physics ; Porous media ; Prandtl number ; Radiation effects ; Schmidt number ; Silicon wafers ; Thermal radiation ; Thin films ; Transpiration ; Viscous fluids</subject><ispartof>Physics of fluids (1994), 2020-11, Vol.32 (11)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-932e857bed757cb10f2e6de29746ddf988086ddaa798f7d5c7f852716040b2c23</citedby><cites>FETCH-LOGICAL-c327t-932e857bed757cb10f2e6de29746ddf988086ddaa798f7d5c7f852716040b2c23</cites><orcidid>0000-0001-7225-7217 ; 0000-0003-1380-6057 ; 0000-0002-8508-2898</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,1555,27906,27907</link.rule.ids></links><search><creatorcontrib>Mahabaleshwar, U. S.</creatorcontrib><creatorcontrib>Nagaraju, K. R.</creatorcontrib><creatorcontrib>Vinay Kumar, P. N.</creatorcontrib><creatorcontrib>Azese, Martin Ndi</creatorcontrib><title>Effect of radiation on thermosolutal Marangoni convection in a porous medium with chemical reaction and heat source/sink</title><title>Physics of fluids (1994)</title><description>Thermosolutal Marangoni boundary layer flows are of great interest due to their applications in industrial applications such as drying of silicon wafers, thin layers of paint, glues, in heat exchangers, and crystal growth in space. The present analysis deals with the effect of chemical radiation and heat absorption/generation of the viscous fluid flow on a thermosolutal Marangoni porous boundary with mass transpiration and heat source/sink. The physical flow problem is mathematically modeled into Navier–Stokes equations. These nonlinear partial differential equations are then mapped into a set of nonlinear ordinary differential equations using similarity transformation. The analytical solutions for velocity, temperature, and concentration profiles are rigorously derived. The solutions so obtained are analyzed through various plots to demonstrate the effect of various physical parameters such as mass transpiration parameter Vc, inverse Darcy number Da−1, Marangoni number Ma, Schmidt number Sc, chemical reaction coefficient (K), Prandtl number (Pr), thermal radiation parameter (NR), and the heat source/sink parameter (I) on the momentum/thermal boundary, and their physical insights are also reported.</description><subject>Boundary layer flow</subject><subject>Chemical reactions</subject><subject>Computational fluid dynamics</subject><subject>Crystal growth</subject><subject>Darcy number</subject><subject>Differential thermal analysis</subject><subject>Exact solutions</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Glues</subject><subject>Heat exchangers</subject><subject>Industrial applications</subject><subject>Marangoni convection</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>Ordinary differential equations</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Porous media</subject><subject>Prandtl number</subject><subject>Radiation effects</subject><subject>Schmidt number</subject><subject>Silicon wafers</subject><subject>Thermal radiation</subject><subject>Thin films</subject><subject>Transpiration</subject><subject>Viscous fluids</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwbTbZTbJHKfUDKl70HNJ8uKndTU2yVf-9W7foQRAGMocnM8MLwHmOJjmiZFpOEMIE8eIAjHLEq4xRSg93PUMZpSQ_BicxrhBCpMJ0BD7m1hqVoLcwSO1kcr6FfaXahMZHv-6SXMMHGWT74lsHlW-3vd8p10IJNz74LsLGaNc18N2lGqraNE71v4KRg5SthrWRCUbfBWWm0bWvp-DIynU0Z_t3DJ5v5k-zu2zxeHs_u15kimCWsopgw0u2NJqVTC1zZLGh2uCKFVRrW3GOeN9IySpumS4Vs7zELKeoQEusMBmDi2HuJvi3zsQkVv0Rbb9S4KJkOeaYlL26HJQKPsZgrNgE18jwKXIkdsGKUuyD7e3VYKNy6TuwH7z14ReKjbb_4b-TvwCLkYgF</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Mahabaleshwar, U. S.</creator><creator>Nagaraju, K. R.</creator><creator>Vinay Kumar, P. N.</creator><creator>Azese, Martin Ndi</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7225-7217</orcidid><orcidid>https://orcid.org/0000-0003-1380-6057</orcidid><orcidid>https://orcid.org/0000-0002-8508-2898</orcidid></search><sort><creationdate>20201101</creationdate><title>Effect of radiation on thermosolutal Marangoni convection in a porous medium with chemical reaction and heat source/sink</title><author>Mahabaleshwar, U. S. ; Nagaraju, K. R. ; Vinay Kumar, P. N. ; Azese, Martin Ndi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-932e857bed757cb10f2e6de29746ddf988086ddaa798f7d5c7f852716040b2c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boundary layer flow</topic><topic>Chemical reactions</topic><topic>Computational fluid dynamics</topic><topic>Crystal growth</topic><topic>Darcy number</topic><topic>Differential thermal analysis</topic><topic>Exact solutions</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Glues</topic><topic>Heat exchangers</topic><topic>Industrial applications</topic><topic>Marangoni convection</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>Ordinary differential equations</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Porous media</topic><topic>Prandtl number</topic><topic>Radiation effects</topic><topic>Schmidt number</topic><topic>Silicon wafers</topic><topic>Thermal radiation</topic><topic>Thin films</topic><topic>Transpiration</topic><topic>Viscous fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahabaleshwar, U. S.</creatorcontrib><creatorcontrib>Nagaraju, K. R.</creatorcontrib><creatorcontrib>Vinay Kumar, P. N.</creatorcontrib><creatorcontrib>Azese, Martin Ndi</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahabaleshwar, U. S.</au><au>Nagaraju, K. R.</au><au>Vinay Kumar, P. N.</au><au>Azese, Martin Ndi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of radiation on thermosolutal Marangoni convection in a porous medium with chemical reaction and heat source/sink</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>32</volume><issue>11</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Thermosolutal Marangoni boundary layer flows are of great interest due to their applications in industrial applications such as drying of silicon wafers, thin layers of paint, glues, in heat exchangers, and crystal growth in space. The present analysis deals with the effect of chemical radiation and heat absorption/generation of the viscous fluid flow on a thermosolutal Marangoni porous boundary with mass transpiration and heat source/sink. The physical flow problem is mathematically modeled into Navier–Stokes equations. These nonlinear partial differential equations are then mapped into a set of nonlinear ordinary differential equations using similarity transformation. The analytical solutions for velocity, temperature, and concentration profiles are rigorously derived. The solutions so obtained are analyzed through various plots to demonstrate the effect of various physical parameters such as mass transpiration parameter Vc, inverse Darcy number Da−1, Marangoni number Ma, Schmidt number Sc, chemical reaction coefficient (K), Prandtl number (Pr), thermal radiation parameter (NR), and the heat source/sink parameter (I) on the momentum/thermal boundary, and their physical insights are also reported.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0023084</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7225-7217</orcidid><orcidid>https://orcid.org/0000-0003-1380-6057</orcidid><orcidid>https://orcid.org/0000-0002-8508-2898</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2020-11, Vol.32 (11)
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_5_0023084
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive
subjects Boundary layer flow
Chemical reactions
Computational fluid dynamics
Crystal growth
Darcy number
Differential thermal analysis
Exact solutions
Fluid dynamics
Fluid flow
Glues
Heat exchangers
Industrial applications
Marangoni convection
Nonlinear differential equations
Nonlinear equations
Ordinary differential equations
Parameters
Partial differential equations
Physical properties
Physics
Porous media
Prandtl number
Radiation effects
Schmidt number
Silicon wafers
Thermal radiation
Thin films
Transpiration
Viscous fluids
title Effect of radiation on thermosolutal Marangoni convection in a porous medium with chemical reaction and heat source/sink
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A45%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20radiation%20on%20thermosolutal%20Marangoni%20convection%20in%20a%20porous%20medium%20with%20chemical%20reaction%20and%20heat%20source/sink&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Mahabaleshwar,%20U.%20S.&rft.date=2020-11-01&rft.volume=32&rft.issue=11&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0023084&rft_dat=%3Cproquest_scita%3E2457128235%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-932e857bed757cb10f2e6de29746ddf988086ddaa798f7d5c7f852716040b2c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2457128235&rft_id=info:pmid/&rfr_iscdi=true