Loading…
Phase-field modeling of the non-congruent crystallization of a ternary Ge–Sb–Te alloy for phase-change memory applications
The ternary alloy of germanium, antimony, and tellurium (GST) is widely used as a material for phase-change memories. In particular, the stoichiometric compound Ge 2Sb 2Te 5 exhibits a rapid congruent crystallization. To increase the temperature at which spontaneous crystallization erases the stored...
Saved in:
Published in: | Journal of applied physics 2020-11, Vol.128 (18) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c424t-7960e7645316d07081543475d0077e8c14370d1acae936c7ed7ca9f7384d71723 |
---|---|
cites | cdi_FETCH-LOGICAL-c424t-7960e7645316d07081543475d0077e8c14370d1acae936c7ed7ca9f7384d71723 |
container_end_page | |
container_issue | 18 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 128 |
creator | Bayle, R. Cueto, O. Blonkowski, S. Philippe, T. Henry, H. Plapp, M. |
description | The ternary alloy of germanium, antimony, and tellurium (GST) is widely used as a material for phase-change memories. In particular, the stoichiometric compound Ge
2Sb
2Te
5 exhibits a rapid congruent crystallization. To increase the temperature at which spontaneous crystallization erases the stored information, alloys that are enriched in germanium have been investigated. Their crystallization is accompanied by segregation and eventually the nucleation of a new, germanium-rich phase. In order to model the redistribution of alloy components and the time evolution of the microstructure during device operations, we develop a multi-phase-field model for the crystallization of GST that includes segregation and couple it with orientation fields that describe the grain structure. We demonstrate that this model is capable to capture both the emergence of a two-phase polycrystalline structure starting from an initially amorphous material, and the melting and recrystallization during the SET and RESET operations in a memory cell of the “wall” type. |
doi_str_mv | 10.1063/5.0023692 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0023692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2460173278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-7960e7645316d07081543475d0077e8c14370d1acae936c7ed7ca9f7384d71723</originalsourceid><addsrcrecordid>eNqd0cFq4zAQBmCxtNC020PfQLCnFtwdWbJHPobQpguBXdj2LFR5nLg4lis5gfRQ-g77hvsk6ySlufWwFwmGj380GsYuBFwLyOX37BoglXmRfmEjAbpIMMvgiI2Gqkh0gcUJO43xCUAILYsRe_21sJGSqqam5EtfUlO3c-4r3i-It75NnG_nYUVtz13YxN42Tf1i-9q3W2R5T6G1YcOn9Pftz-_H4bgnPiC_4ZUPvNulu4Vt58SXtPQDtV3X1G6XEb-y48o2kc7f7zP2cHtzP7lLZj-nPybjWeJUqvoEixwIc5VJkZeAoEWmpMKsBEAk7YSSCKWwzlIhc4dUorNFhVKrEgWm8oxd7nMXtjFdqJfDm423tbkbz8y2BhJEDkqvxWC_7W0X_POKYm-e_GqYsokmVTkIlCnqz1WmtVCI6tDXBR9joOqjuQCzXZjJzPvCBnu1t9HV_e57_g-vfThA05WV_AeYyKQS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458814774</pqid></control><display><type>article</type><title>Phase-field modeling of the non-congruent crystallization of a ternary Ge–Sb–Te alloy for phase-change memory applications</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Bayle, R. ; Cueto, O. ; Blonkowski, S. ; Philippe, T. ; Henry, H. ; Plapp, M.</creator><creatorcontrib>Bayle, R. ; Cueto, O. ; Blonkowski, S. ; Philippe, T. ; Henry, H. ; Plapp, M.</creatorcontrib><description>The ternary alloy of germanium, antimony, and tellurium (GST) is widely used as a material for phase-change memories. In particular, the stoichiometric compound Ge
2Sb
2Te
5 exhibits a rapid congruent crystallization. To increase the temperature at which spontaneous crystallization erases the stored information, alloys that are enriched in germanium have been investigated. Their crystallization is accompanied by segregation and eventually the nucleation of a new, germanium-rich phase. In order to model the redistribution of alloy components and the time evolution of the microstructure during device operations, we develop a multi-phase-field model for the crystallization of GST that includes segregation and couple it with orientation fields that describe the grain structure. We demonstrate that this model is capable to capture both the emergence of a two-phase polycrystalline structure starting from an initially amorphous material, and the melting and recrystallization during the SET and RESET operations in a memory cell of the “wall” type.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0023692</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Alloys ; Amorphous materials ; Antimony ; Applied physics ; Computer memory ; Condensed Matter ; Crystallization ; Engineering Sciences ; Germanium ; Germanium base alloys ; Grain structure ; Materials ; Nucleation ; Physics ; Recrystallization ; Tellurium ; Ternary alloys</subject><ispartof>Journal of applied physics, 2020-11, Vol.128 (18)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-7960e7645316d07081543475d0077e8c14370d1acae936c7ed7ca9f7384d71723</citedby><cites>FETCH-LOGICAL-c424t-7960e7645316d07081543475d0077e8c14370d1acae936c7ed7ca9f7384d71723</cites><orcidid>0000-0001-5050-917X ; 0000-0003-1600-0147 ; 0000-0002-1291-5000 ; 0000-0001-7899-7865 ; 0000-0002-1433-0620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03016048$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bayle, R.</creatorcontrib><creatorcontrib>Cueto, O.</creatorcontrib><creatorcontrib>Blonkowski, S.</creatorcontrib><creatorcontrib>Philippe, T.</creatorcontrib><creatorcontrib>Henry, H.</creatorcontrib><creatorcontrib>Plapp, M.</creatorcontrib><title>Phase-field modeling of the non-congruent crystallization of a ternary Ge–Sb–Te alloy for phase-change memory applications</title><title>Journal of applied physics</title><description>The ternary alloy of germanium, antimony, and tellurium (GST) is widely used as a material for phase-change memories. In particular, the stoichiometric compound Ge
2Sb
2Te
5 exhibits a rapid congruent crystallization. To increase the temperature at which spontaneous crystallization erases the stored information, alloys that are enriched in germanium have been investigated. Their crystallization is accompanied by segregation and eventually the nucleation of a new, germanium-rich phase. In order to model the redistribution of alloy components and the time evolution of the microstructure during device operations, we develop a multi-phase-field model for the crystallization of GST that includes segregation and couple it with orientation fields that describe the grain structure. We demonstrate that this model is capable to capture both the emergence of a two-phase polycrystalline structure starting from an initially amorphous material, and the melting and recrystallization during the SET and RESET operations in a memory cell of the “wall” type.</description><subject>Alloys</subject><subject>Amorphous materials</subject><subject>Antimony</subject><subject>Applied physics</subject><subject>Computer memory</subject><subject>Condensed Matter</subject><subject>Crystallization</subject><subject>Engineering Sciences</subject><subject>Germanium</subject><subject>Germanium base alloys</subject><subject>Grain structure</subject><subject>Materials</subject><subject>Nucleation</subject><subject>Physics</subject><subject>Recrystallization</subject><subject>Tellurium</subject><subject>Ternary alloys</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0cFq4zAQBmCxtNC020PfQLCnFtwdWbJHPobQpguBXdj2LFR5nLg4lis5gfRQ-g77hvsk6ySlufWwFwmGj380GsYuBFwLyOX37BoglXmRfmEjAbpIMMvgiI2Gqkh0gcUJO43xCUAILYsRe_21sJGSqqam5EtfUlO3c-4r3i-It75NnG_nYUVtz13YxN42Tf1i-9q3W2R5T6G1YcOn9Pftz-_H4bgnPiC_4ZUPvNulu4Vt58SXtPQDtV3X1G6XEb-y48o2kc7f7zP2cHtzP7lLZj-nPybjWeJUqvoEixwIc5VJkZeAoEWmpMKsBEAk7YSSCKWwzlIhc4dUorNFhVKrEgWm8oxd7nMXtjFdqJfDm423tbkbz8y2BhJEDkqvxWC_7W0X_POKYm-e_GqYsokmVTkIlCnqz1WmtVCI6tDXBR9joOqjuQCzXZjJzPvCBnu1t9HV_e57_g-vfThA05WV_AeYyKQS</recordid><startdate>20201114</startdate><enddate>20201114</enddate><creator>Bayle, R.</creator><creator>Cueto, O.</creator><creator>Blonkowski, S.</creator><creator>Philippe, T.</creator><creator>Henry, H.</creator><creator>Plapp, M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5050-917X</orcidid><orcidid>https://orcid.org/0000-0003-1600-0147</orcidid><orcidid>https://orcid.org/0000-0002-1291-5000</orcidid><orcidid>https://orcid.org/0000-0001-7899-7865</orcidid><orcidid>https://orcid.org/0000-0002-1433-0620</orcidid></search><sort><creationdate>20201114</creationdate><title>Phase-field modeling of the non-congruent crystallization of a ternary Ge–Sb–Te alloy for phase-change memory applications</title><author>Bayle, R. ; Cueto, O. ; Blonkowski, S. ; Philippe, T. ; Henry, H. ; Plapp, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-7960e7645316d07081543475d0077e8c14370d1acae936c7ed7ca9f7384d71723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloys</topic><topic>Amorphous materials</topic><topic>Antimony</topic><topic>Applied physics</topic><topic>Computer memory</topic><topic>Condensed Matter</topic><topic>Crystallization</topic><topic>Engineering Sciences</topic><topic>Germanium</topic><topic>Germanium base alloys</topic><topic>Grain structure</topic><topic>Materials</topic><topic>Nucleation</topic><topic>Physics</topic><topic>Recrystallization</topic><topic>Tellurium</topic><topic>Ternary alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bayle, R.</creatorcontrib><creatorcontrib>Cueto, O.</creatorcontrib><creatorcontrib>Blonkowski, S.</creatorcontrib><creatorcontrib>Philippe, T.</creatorcontrib><creatorcontrib>Henry, H.</creatorcontrib><creatorcontrib>Plapp, M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bayle, R.</au><au>Cueto, O.</au><au>Blonkowski, S.</au><au>Philippe, T.</au><au>Henry, H.</au><au>Plapp, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-field modeling of the non-congruent crystallization of a ternary Ge–Sb–Te alloy for phase-change memory applications</atitle><jtitle>Journal of applied physics</jtitle><date>2020-11-14</date><risdate>2020</risdate><volume>128</volume><issue>18</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The ternary alloy of germanium, antimony, and tellurium (GST) is widely used as a material for phase-change memories. In particular, the stoichiometric compound Ge
2Sb
2Te
5 exhibits a rapid congruent crystallization. To increase the temperature at which spontaneous crystallization erases the stored information, alloys that are enriched in germanium have been investigated. Their crystallization is accompanied by segregation and eventually the nucleation of a new, germanium-rich phase. In order to model the redistribution of alloy components and the time evolution of the microstructure during device operations, we develop a multi-phase-field model for the crystallization of GST that includes segregation and couple it with orientation fields that describe the grain structure. We demonstrate that this model is capable to capture both the emergence of a two-phase polycrystalline structure starting from an initially amorphous material, and the melting and recrystallization during the SET and RESET operations in a memory cell of the “wall” type.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0023692</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5050-917X</orcidid><orcidid>https://orcid.org/0000-0003-1600-0147</orcidid><orcidid>https://orcid.org/0000-0002-1291-5000</orcidid><orcidid>https://orcid.org/0000-0001-7899-7865</orcidid><orcidid>https://orcid.org/0000-0002-1433-0620</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2020-11, Vol.128 (18) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0023692 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Alloys Amorphous materials Antimony Applied physics Computer memory Condensed Matter Crystallization Engineering Sciences Germanium Germanium base alloys Grain structure Materials Nucleation Physics Recrystallization Tellurium Ternary alloys |
title | Phase-field modeling of the non-congruent crystallization of a ternary Ge–Sb–Te alloy for phase-change memory applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A50%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-field%20modeling%20of%20the%20non-congruent%20crystallization%20of%20a%20ternary%20Ge%E2%80%93Sb%E2%80%93Te%20alloy%20for%20phase-change%20memory%20applications&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Bayle,%20R.&rft.date=2020-11-14&rft.volume=128&rft.issue=18&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0023692&rft_dat=%3Cproquest_scita%3E2460173278%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-7960e7645316d07081543475d0077e8c14370d1acae936c7ed7ca9f7384d71723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2458814774&rft_id=info:pmid/&rfr_iscdi=true |