Loading…

Phase-field modeling of the non-congruent crystallization of a ternary Ge–Sb–Te alloy for phase-change memory applications

The ternary alloy of germanium, antimony, and tellurium (GST) is widely used as a material for phase-change memories. In particular, the stoichiometric compound Ge 2Sb 2Te 5 exhibits a rapid congruent crystallization. To increase the temperature at which spontaneous crystallization erases the stored...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2020-11, Vol.128 (18)
Main Authors: Bayle, R., Cueto, O., Blonkowski, S., Philippe, T., Henry, H., Plapp, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c424t-7960e7645316d07081543475d0077e8c14370d1acae936c7ed7ca9f7384d71723
cites cdi_FETCH-LOGICAL-c424t-7960e7645316d07081543475d0077e8c14370d1acae936c7ed7ca9f7384d71723
container_end_page
container_issue 18
container_start_page
container_title Journal of applied physics
container_volume 128
creator Bayle, R.
Cueto, O.
Blonkowski, S.
Philippe, T.
Henry, H.
Plapp, M.
description The ternary alloy of germanium, antimony, and tellurium (GST) is widely used as a material for phase-change memories. In particular, the stoichiometric compound Ge 2Sb 2Te 5 exhibits a rapid congruent crystallization. To increase the temperature at which spontaneous crystallization erases the stored information, alloys that are enriched in germanium have been investigated. Their crystallization is accompanied by segregation and eventually the nucleation of a new, germanium-rich phase. In order to model the redistribution of alloy components and the time evolution of the microstructure during device operations, we develop a multi-phase-field model for the crystallization of GST that includes segregation and couple it with orientation fields that describe the grain structure. We demonstrate that this model is capable to capture both the emergence of a two-phase polycrystalline structure starting from an initially amorphous material, and the melting and recrystallization during the SET and RESET operations in a memory cell of the “wall” type.
doi_str_mv 10.1063/5.0023692
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0023692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2460173278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-7960e7645316d07081543475d0077e8c14370d1acae936c7ed7ca9f7384d71723</originalsourceid><addsrcrecordid>eNqd0cFq4zAQBmCxtNC020PfQLCnFtwdWbJHPobQpguBXdj2LFR5nLg4lis5gfRQ-g77hvsk6ySlufWwFwmGj380GsYuBFwLyOX37BoglXmRfmEjAbpIMMvgiI2Gqkh0gcUJO43xCUAILYsRe_21sJGSqqam5EtfUlO3c-4r3i-It75NnG_nYUVtz13YxN42Tf1i-9q3W2R5T6G1YcOn9Pftz-_H4bgnPiC_4ZUPvNulu4Vt58SXtPQDtV3X1G6XEb-y48o2kc7f7zP2cHtzP7lLZj-nPybjWeJUqvoEixwIc5VJkZeAoEWmpMKsBEAk7YSSCKWwzlIhc4dUorNFhVKrEgWm8oxd7nMXtjFdqJfDm423tbkbz8y2BhJEDkqvxWC_7W0X_POKYm-e_GqYsokmVTkIlCnqz1WmtVCI6tDXBR9joOqjuQCzXZjJzPvCBnu1t9HV_e57_g-vfThA05WV_AeYyKQS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458814774</pqid></control><display><type>article</type><title>Phase-field modeling of the non-congruent crystallization of a ternary Ge–Sb–Te alloy for phase-change memory applications</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Bayle, R. ; Cueto, O. ; Blonkowski, S. ; Philippe, T. ; Henry, H. ; Plapp, M.</creator><creatorcontrib>Bayle, R. ; Cueto, O. ; Blonkowski, S. ; Philippe, T. ; Henry, H. ; Plapp, M.</creatorcontrib><description>The ternary alloy of germanium, antimony, and tellurium (GST) is widely used as a material for phase-change memories. In particular, the stoichiometric compound Ge 2Sb 2Te 5 exhibits a rapid congruent crystallization. To increase the temperature at which spontaneous crystallization erases the stored information, alloys that are enriched in germanium have been investigated. Their crystallization is accompanied by segregation and eventually the nucleation of a new, germanium-rich phase. In order to model the redistribution of alloy components and the time evolution of the microstructure during device operations, we develop a multi-phase-field model for the crystallization of GST that includes segregation and couple it with orientation fields that describe the grain structure. We demonstrate that this model is capable to capture both the emergence of a two-phase polycrystalline structure starting from an initially amorphous material, and the melting and recrystallization during the SET and RESET operations in a memory cell of the “wall” type.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0023692</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Alloys ; Amorphous materials ; Antimony ; Applied physics ; Computer memory ; Condensed Matter ; Crystallization ; Engineering Sciences ; Germanium ; Germanium base alloys ; Grain structure ; Materials ; Nucleation ; Physics ; Recrystallization ; Tellurium ; Ternary alloys</subject><ispartof>Journal of applied physics, 2020-11, Vol.128 (18)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-7960e7645316d07081543475d0077e8c14370d1acae936c7ed7ca9f7384d71723</citedby><cites>FETCH-LOGICAL-c424t-7960e7645316d07081543475d0077e8c14370d1acae936c7ed7ca9f7384d71723</cites><orcidid>0000-0001-5050-917X ; 0000-0003-1600-0147 ; 0000-0002-1291-5000 ; 0000-0001-7899-7865 ; 0000-0002-1433-0620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03016048$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bayle, R.</creatorcontrib><creatorcontrib>Cueto, O.</creatorcontrib><creatorcontrib>Blonkowski, S.</creatorcontrib><creatorcontrib>Philippe, T.</creatorcontrib><creatorcontrib>Henry, H.</creatorcontrib><creatorcontrib>Plapp, M.</creatorcontrib><title>Phase-field modeling of the non-congruent crystallization of a ternary Ge–Sb–Te alloy for phase-change memory applications</title><title>Journal of applied physics</title><description>The ternary alloy of germanium, antimony, and tellurium (GST) is widely used as a material for phase-change memories. In particular, the stoichiometric compound Ge 2Sb 2Te 5 exhibits a rapid congruent crystallization. To increase the temperature at which spontaneous crystallization erases the stored information, alloys that are enriched in germanium have been investigated. Their crystallization is accompanied by segregation and eventually the nucleation of a new, germanium-rich phase. In order to model the redistribution of alloy components and the time evolution of the microstructure during device operations, we develop a multi-phase-field model for the crystallization of GST that includes segregation and couple it with orientation fields that describe the grain structure. We demonstrate that this model is capable to capture both the emergence of a two-phase polycrystalline structure starting from an initially amorphous material, and the melting and recrystallization during the SET and RESET operations in a memory cell of the “wall” type.</description><subject>Alloys</subject><subject>Amorphous materials</subject><subject>Antimony</subject><subject>Applied physics</subject><subject>Computer memory</subject><subject>Condensed Matter</subject><subject>Crystallization</subject><subject>Engineering Sciences</subject><subject>Germanium</subject><subject>Germanium base alloys</subject><subject>Grain structure</subject><subject>Materials</subject><subject>Nucleation</subject><subject>Physics</subject><subject>Recrystallization</subject><subject>Tellurium</subject><subject>Ternary alloys</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0cFq4zAQBmCxtNC020PfQLCnFtwdWbJHPobQpguBXdj2LFR5nLg4lis5gfRQ-g77hvsk6ySlufWwFwmGj380GsYuBFwLyOX37BoglXmRfmEjAbpIMMvgiI2Gqkh0gcUJO43xCUAILYsRe_21sJGSqqam5EtfUlO3c-4r3i-It75NnG_nYUVtz13YxN42Tf1i-9q3W2R5T6G1YcOn9Pftz-_H4bgnPiC_4ZUPvNulu4Vt58SXtPQDtV3X1G6XEb-y48o2kc7f7zP2cHtzP7lLZj-nPybjWeJUqvoEixwIc5VJkZeAoEWmpMKsBEAk7YSSCKWwzlIhc4dUorNFhVKrEgWm8oxd7nMXtjFdqJfDm423tbkbz8y2BhJEDkqvxWC_7W0X_POKYm-e_GqYsokmVTkIlCnqz1WmtVCI6tDXBR9joOqjuQCzXZjJzPvCBnu1t9HV_e57_g-vfThA05WV_AeYyKQS</recordid><startdate>20201114</startdate><enddate>20201114</enddate><creator>Bayle, R.</creator><creator>Cueto, O.</creator><creator>Blonkowski, S.</creator><creator>Philippe, T.</creator><creator>Henry, H.</creator><creator>Plapp, M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5050-917X</orcidid><orcidid>https://orcid.org/0000-0003-1600-0147</orcidid><orcidid>https://orcid.org/0000-0002-1291-5000</orcidid><orcidid>https://orcid.org/0000-0001-7899-7865</orcidid><orcidid>https://orcid.org/0000-0002-1433-0620</orcidid></search><sort><creationdate>20201114</creationdate><title>Phase-field modeling of the non-congruent crystallization of a ternary Ge–Sb–Te alloy for phase-change memory applications</title><author>Bayle, R. ; Cueto, O. ; Blonkowski, S. ; Philippe, T. ; Henry, H. ; Plapp, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-7960e7645316d07081543475d0077e8c14370d1acae936c7ed7ca9f7384d71723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloys</topic><topic>Amorphous materials</topic><topic>Antimony</topic><topic>Applied physics</topic><topic>Computer memory</topic><topic>Condensed Matter</topic><topic>Crystallization</topic><topic>Engineering Sciences</topic><topic>Germanium</topic><topic>Germanium base alloys</topic><topic>Grain structure</topic><topic>Materials</topic><topic>Nucleation</topic><topic>Physics</topic><topic>Recrystallization</topic><topic>Tellurium</topic><topic>Ternary alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bayle, R.</creatorcontrib><creatorcontrib>Cueto, O.</creatorcontrib><creatorcontrib>Blonkowski, S.</creatorcontrib><creatorcontrib>Philippe, T.</creatorcontrib><creatorcontrib>Henry, H.</creatorcontrib><creatorcontrib>Plapp, M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bayle, R.</au><au>Cueto, O.</au><au>Blonkowski, S.</au><au>Philippe, T.</au><au>Henry, H.</au><au>Plapp, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-field modeling of the non-congruent crystallization of a ternary Ge–Sb–Te alloy for phase-change memory applications</atitle><jtitle>Journal of applied physics</jtitle><date>2020-11-14</date><risdate>2020</risdate><volume>128</volume><issue>18</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The ternary alloy of germanium, antimony, and tellurium (GST) is widely used as a material for phase-change memories. In particular, the stoichiometric compound Ge 2Sb 2Te 5 exhibits a rapid congruent crystallization. To increase the temperature at which spontaneous crystallization erases the stored information, alloys that are enriched in germanium have been investigated. Their crystallization is accompanied by segregation and eventually the nucleation of a new, germanium-rich phase. In order to model the redistribution of alloy components and the time evolution of the microstructure during device operations, we develop a multi-phase-field model for the crystallization of GST that includes segregation and couple it with orientation fields that describe the grain structure. We demonstrate that this model is capable to capture both the emergence of a two-phase polycrystalline structure starting from an initially amorphous material, and the melting and recrystallization during the SET and RESET operations in a memory cell of the “wall” type.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0023692</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5050-917X</orcidid><orcidid>https://orcid.org/0000-0003-1600-0147</orcidid><orcidid>https://orcid.org/0000-0002-1291-5000</orcidid><orcidid>https://orcid.org/0000-0001-7899-7865</orcidid><orcidid>https://orcid.org/0000-0002-1433-0620</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2020-11, Vol.128 (18)
issn 0021-8979
1089-7550
language eng
recordid cdi_scitation_primary_10_1063_5_0023692
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Alloys
Amorphous materials
Antimony
Applied physics
Computer memory
Condensed Matter
Crystallization
Engineering Sciences
Germanium
Germanium base alloys
Grain structure
Materials
Nucleation
Physics
Recrystallization
Tellurium
Ternary alloys
title Phase-field modeling of the non-congruent crystallization of a ternary Ge–Sb–Te alloy for phase-change memory applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A50%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-field%20modeling%20of%20the%20non-congruent%20crystallization%20of%20a%20ternary%20Ge%E2%80%93Sb%E2%80%93Te%20alloy%20for%20phase-change%20memory%20applications&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Bayle,%20R.&rft.date=2020-11-14&rft.volume=128&rft.issue=18&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0023692&rft_dat=%3Cproquest_scita%3E2460173278%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-7960e7645316d07081543475d0077e8c14370d1acae936c7ed7ca9f7384d71723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2458814774&rft_id=info:pmid/&rfr_iscdi=true